

Coll of Wm & Mary Columbia U CompX

General Atomics

Johns Hopkins U

Nova Photonics

Old Dominion

Princeton U

Think Tank, Inc.

Purdue U

UC Davis

UC Irvine

U Colorado

U Maryland

U Rochester

U Tennessee

U Washington

X Science LLC

U Wisconsin

U Illinois

U Tulsa

UCLA

UCSD

FIU

INL

LANL

LLNL

MIT

Lodestar

Lehigh U

ORNL

PPPL

SNL

Supported by

Benchmarking

J.W. Berkery

Department of Applied Physics, Columbia University, New York, NY, USA

Rochester, New York March 15, 2012

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI **Chonbuk Natl U** NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati **CEA**, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep

Office of

MDC-2 Benchmarking of kinetic models: overview & steps

- Codes: HAGIS, MARS-K, MISK
- Choice of equilibria for benchmarking
 - Start by using Solov'ev

Spring 2011

- HAGIS / MARS-K, and MISK / MARS-K benchmarked to different degrees using Solov'ev equilibria; collect/cross compare results
 - HAGIS/MARS results published [Y. Liu et al., Phys. Plasmas 15, 112503 (2008)]
- Simplicity may lead to unrealistic anomalies better to use realistic cases?
- Move on to ITER-relevant equilibria
 - Use Scenario IV, or new equilibria recently generated for WG7 task by Y. Liu (more realistic; directly applicable to ITER)
 - Need kinetic profiles as well as fluid pressure
- Approach to stability comparison start with
 - ideal fluid quantities ($\delta W^{no-wall}$, δW^{wall} , etc.)
 - n = 1 (consider n > 1 in a future step)
 - perturbative approach on static eigenfunction input ensure that unstable eigenfunction is consistent among codes (e.g. no-wall ideal for MISHKA)
 - no-wall / with-wall $β_N$ limits (equilibrium β scan needed)

Fall 2011

Initial comparison of stability calculations for Solov'ev, ITER cases (Oct. 2011)

Work in progress!

	r _{wall} /a	ldeal δW /(-δW _∞)	Re(δW _K) /(-δW _∞)	Im(δW _κ) /(-δW _∞)	γτ _w	ωτ _w	δW_{K} /(- δW_{∞}) ($\omega_{E} \rightarrow \infty$)
<u>Solov'ev 1</u> (MARS-K) (MISK)	1.15	1.187 1.122	0.0256 0.0243	-0.0121 0.0280	0.804 0.850	-0.0180 -0.0452	0.157 0.236
<u>Solov'ev 3</u> (MARS-K) (MISK)	1.10	1.830 2.337	0.208 0.371	-0.343 0.060	0.350 0.232	-0.228 -0.027	0.689
<u>ITER</u> (MARS-K) (MISK)	1.50	0.682 0.677	141.5 0.665	2.286 -0.548	-0.988 0.071	0.00019 0.437	8.46

- Calculations from MISK, and MARS-K (perturbative)
 - Good agreement on ideal δW , Solov'ev 1 Re(δW_{K}), $\gamma \tau_{w}$
 - Less agreement on Solov'ev 3, ωτ_w
 - Very different ITER result (do we have different input?)

We have compared results for Solov'ev 1 case broken down into particle types, and they do not agree.

MISK now has the ability to separate I=0 and $I\neq 0$ components.

	thermal ions						thermal electrons		Alfvén Laver		Total	
	trapped				circulating		trapped $(l = 0 \text{ only})$		Aliven Layer		Iotai	
	$l = 0$ $l \neq 0$		4 0	circulating		$\operatorname{crapped}(t = 0 \operatorname{orm} y)$						
	real	imag	real	imag	real	imag	real	imag	real	imag	real	imag
Solov'ev 1	8.46×10^{-2}	-1.48×10^{-2}	3.10×10^{-3}	$\!$	-2.10×10^{-3}	-1.33×10^{-4}	-6.00×10^{-2}	$2.95\!\times\!10^{3}$			$2.56\!\times\!10^{\text{-}2}$	-1.21×10^{-2}
50107 67 1	$1.45{\times}10^{\text{-2}}$	$2.23\!\times\!\!10^{\text{-}6}$	3.84×10^{-3}	8.12×10^{-3}	-8.90×10^{-3}	$2.05\!\times\!10^{\text{-}2}$	$1.58\!\times\!10^{\text{-}2}$	$3.68\!\times\!10^{\text{-}5}$	0	0	$2.51\!\times\!10^{\text{-}2}$	$2.87{\times}10^{-2}$
Soloviev 3											$2.08\!\times\!10^{\text{-}1}$	-3.43×10^{-1}
50107 67 5	$1.90{\times}10^{\text{-}1}$	$2.50{\times}10^{-6}$	-8.69×10^{-3}	$1.45{\times}10^{\text{-}2}$	$4.03\!\times\!10^{\text{-}3}$	$3.93\!\times\!10^{-2}$	$1.90{\times}10^{\text{-}1}$	$6.46\!\times\!10^{-5}$	-3.81×10^{-5}	$\text{-}1.20{\times}10^{\text{-}5}$	$3.71\!\times\!10^{-1}$	$1.46{ imes}10^{-2}$
ITER												
m	8.52×10^{-1}	3.05×10^{-4}	-9.96×10^{-2}	2.68×10^{-2}	-2.23×10^{-1}	3.78×10^{-2}	1.35×10^{-1}	-1.64×10^{-2}	-1.03×10^{-2}	-7.95×10^{-1}	6.53×10^{-1}	-7.46×10^{-1}

 $\delta W_{\rm K}$ /- $\delta W_{\rm w}$ for MISK (blue) and MARS-K (red)

MISK frequency calculation improved by analytic calculation of integrals involving $1/v_{||}$ at $v_{||} \rightarrow 0$. Note: does not affect the outcome very much.

WNSTX-U

MISK calculates the energy integral numerically, MARS-K does it analytically

$$I_{\varepsilon}\left(\Psi,\Lambda,l\right) = \int_{0}^{\infty} \frac{n\left(\omega_{*N} + \left(\hat{\varepsilon} - \frac{3}{2}\right)\omega_{*T}\right) + n\omega_{E} - \omega_{r} - i\gamma}{n\left(\omega_{D} + \left(l + \alpha nq\right)\omega_{b}\right) - i\nu_{\text{eff}} + n\omega_{E} - \omega_{r} - i\gamma}\hat{\varepsilon}^{\frac{5}{2}}e^{-\hat{\varepsilon}}d\hat{\varepsilon}.$$

Analytical solutions are only possible in certain cases:

2. $\nu_{\text{eff}} = \text{constant}$ (no energy dependence), and l = 0 for trapped particles

This is the case for trapped particles without energy-dependent collisions, with only the precession drift and no bounce frequency,

$$I_{\varepsilon} = \int_{0}^{\infty} \frac{\Omega_{*}^{a} + \Omega_{n} + \hat{\varepsilon} \Omega_{*}^{b}}{\hat{\varepsilon} + \Omega_{n}} \hat{\varepsilon}^{\frac{5}{2}} e^{-\hat{\varepsilon}} d\hat{\varepsilon}, \qquad (39)$$

where $\Omega_n = (n\omega_E - \omega - i\nu_{\text{eff}})/(n\overline{\omega_D})$, $\Omega^a_* = (n\omega_{*N} - \frac{3}{2}n\omega_{*T} + i\nu_{\text{eff}})/(n\overline{\omega_D})$, $\Omega^b_* = \omega_{*T}/\overline{\omega_D}$, and $\omega_D = \overline{\omega_D}\hat{\varepsilon}$ (ie. $\overline{\omega_D}$ is the non-energy dependent portion of ω_D). The solution is given in Ref. [16], Eq. 30:

$$I_{\varepsilon} = \frac{15\sqrt{\pi}}{8}\Omega^b_* + 2\sqrt{\pi}\left(\Omega_n + \Omega^a_* - \Omega_n\Omega^b_*\right) \left[\frac{3}{8} - \frac{1}{4}\Omega_n + \frac{1}{2}\Omega^2_n + i\frac{1}{2}\Omega^{\frac{5}{2}}_n Z\left(i\Omega^{\frac{1}{2}}_n\right)\right],\tag{40}$$

where Z is the plasma dispersion function.

MISK calculates the energy integral numerically, MARS-K does it analytically (cont.)

$$I_{\varepsilon}\left(\Psi,\Lambda,l\right) = \int_{0}^{\infty} \frac{n\left(\omega_{*N} + \left(\hat{\varepsilon} - \frac{3}{2}\right)\omega_{*T}\right) + n\omega_{E} - \omega_{r} - i\gamma}{n\left(\omega_{D} + \left(l + \alpha nq\right)\omega_{b}\right) - i\nu_{\text{eff}} + n\omega_{E} - \omega_{r} - i\gamma}\hat{\varepsilon}^{\frac{5}{2}}e^{-\hat{\varepsilon}}d\hat{\varepsilon}.$$

Analytical solutions are only possible in certain cases:

3. $\nu_{\text{eff}} = \text{constant}$ (no energy dependence), $l \neq 0$ for trapped particles, and $|\omega_D| \ll |l\omega_b|$

This is the case again without energy-dependent collisions, for trapped particles with $l \neq 0$ where the precession drift frequency is neglected with respect to the bounce frequency. If we now define $\Omega_{n2} = (n\omega_E - \omega - i\nu_{\text{eff}})/(nl\overline{\omega_b})$, $\Omega_*^{a2} = (n\omega_{*N} - \frac{3}{2}n\omega_{*T} + i\nu_{\text{eff}})/(nl\overline{\omega_b})$, $\Omega_*^{b2} = \omega_{*T}/\overline{l\omega_b}$, and $\omega_b = \overline{\omega_b}\hat{\varepsilon}^{\frac{1}{2}}$ (ie. $\overline{\omega_b}$ is the non-energy dependent portion of ω_b), then

$$I_{\varepsilon} = \int_{0}^{\infty} \frac{\Omega_{*}^{a2} + \Omega_{n2} + \hat{\varepsilon} \Omega_{*}^{b2}}{\frac{\overline{\omega_{D}}}{l\omega_{b}} \hat{\varepsilon} + \hat{\varepsilon}^{\frac{1}{2}} + \Omega_{n2}} \hat{\varepsilon}^{\frac{5}{2}} e^{-\hat{\varepsilon}} d\hat{\varepsilon}.$$
(43)

With $\overline{\omega_D}/l\overline{\omega_b} \to 0$ this has the analytical solution

$$I_{\varepsilon} = -\Omega_{*}^{b2} \left(\frac{15\sqrt{\pi}}{8} \Omega_{n2} - 6 \right) + 2\sqrt{\pi} \left(\Omega_{n2} + \Omega_{*}^{a2} + \Omega_{n2}^{2} \Omega_{*}^{b2} \right) \left[-\Omega_{n2} \left(\frac{3}{8} + \frac{1}{4} \Omega_{n2}^{2} + \frac{1}{2} \Omega_{n2}^{4} \right) - \frac{1}{2} \Omega_{n2}^{6} Z \left(\Omega_{n2} \right) \right. \\ \left. + \frac{1}{2\sqrt{\pi}} \left(\Omega_{n2}^{4} + \Omega_{n2}^{2} + 2 \right) + \frac{1}{2\sqrt{\pi}} e^{-\Omega_{n2}^{2}} \left(i\pi - \text{Ei}(\Omega_{n2}^{2}) + \frac{1}{2} \ln(\Omega_{n2}^{2}) - \frac{1}{2} \ln(\Omega_{n2}^{-2}) - 2 \ln(\Omega_{n2}) \right) \right].$$
(44)

MISK used to compare numerical/ analytical solution of I_e for ITER case: compares well*

- Reasonable agreement gives confidence that MISK is properly computing the energy integral
 - Useful when comparing to other codes
 - Similar calculation made for both Solov'ev 1 and 3 cases using MISK
 - Also found that numerical computation compares well to analytical
 - *Note: calculation for trapped thermal ions

Convergence study vs. damping parameter shows no issues with zero damping

FIG. 24. Convergence of δW_K versus damping for the Solov'ev 1 case, as calculated by a) MARS-K, and b) MISK. For MISK, blue indicates numerical evaluation of the energy integral and black indicates analytical.

- Damping from either collisions or mode growth rate.
- Both codes converge, but to different values.

Kruskal-Oberman limit calculations performed: MISK and MARS-K results differ by 50% (should be closer)

In the Kruskal-Oberman limit $|\omega_E - \omega| \to \infty$ and therefore

$$I_{\varepsilon}\left(\Psi,\Lambda,l\right)\to I_{\varepsilon}^{KO}=\int_{0}^{\infty}\hat{\varepsilon}^{\frac{5}{2}}e^{-\hat{\varepsilon}}d\hat{\varepsilon}=\frac{15\sqrt{\pi}}{8}.$$

In this limit δW_K is purely real, and independent of the mode-particle resonances. This allows a good check on the $|\langle H/\hat{\varepsilon} \rangle|^2$ part of the problem.

 $\delta W_{\rm K}/-\delta W_{\rm m}$ for MISK (blue) and MARS-K (red) $\sqrt{}$

						\		
	thermal ions			the				
	trapped		circulating	trap	ped	circulating	Total	
	l = 0	$l \neq 0$	enequating	l = 0	$l \neq 0$	chredhating		
Q_l1						(1.57×10^{-1}	
Solov ev 1	1.11×10^{-2}	1.02×10^{-2}	9.69×10^{-2}	1.11×10^{-2}	1.02×10^{-2}	9.69×10^{-2}	2.36×10^{-1}	
Solow'ou 2								
2010/ 6/ 2	1.16×10^{-1}	4.84×10^{-2}	1.80×10^{-1}	1.16×10^{-1}	4.84×10^{-2}	1.80×10^{-1}	6.89×10^{-1}	
ITED								
TTER	5.83×10^{-1}	5.20×10^{-1}	2.74	7.02×10^{-1}	6.01×10^{-1}	3.30	8.46	

- Major simplification (I_{ϵ} = constant) gives key clue to issue
 - Different indicates the issue is in the perturbed Lagrangian.
 - Solution to differences in Lagrangian may eliminate most of the problem.

MARS-K and MISK energy integrals now agree* for Solov'ev 1 equilibrium

- Attaining agreement
 - Required properly matching frequency inputs
 - Flip sign of imaginary part
 - Positive I in MISK is negative in MARS-K
 - Because of MARS-K lefthanded coordinate system?
 - *Note: calculation for trapped thermal ions
 - Expand to all particles

XXX

MARS-K adopts an MHD – drift kinetic hybrid formulation for both thermal & hot particles

HAGIS Suite of codes (+references) - Stability

() NSTX-U

Started code comparison with simple equilibria and profile assumptions

$$\mu_0 P(\psi) = -\frac{1+\kappa^2}{\kappa R_0^3 q_0} \psi, \quad F(\psi) = 1$$
$$\psi = \frac{\kappa}{2R_0^3 q_0} \left[\frac{R^2 Z^2}{\kappa^2} + \frac{1}{4} \left(R^2 - R_0^2 \right)^2 - a^2 R_0^2 \right]$$
$$\delta W_K \propto \int \left[\frac{\omega_{*N} + \left(\hat{\varepsilon} - \frac{3}{2}\right) \omega_{*T} + \omega_E}{\langle \omega_D \rangle + l\omega_b + \omega_E} \right] \hat{\varepsilon}^{\frac{5}{2}} e^{-\hat{\varepsilon}} d\hat{\varepsilon}$$

- Common ground for codes (MARS / HAGIS / MISK)
 - Solov'ev equilibria
 - Codes run in perturbative mode
 - Density gradient
 constant
 - No energetic particles
 - $-\omega_r, \gamma, \nu_{eff} = 0$

Simplified resonant denominator due to assumptions

Expanded comparison to include ITER equilibrium

- More realistic case (ITER)
 - ITPA MHD WG7 equilibrium
 - $I_p = 9 \text{ MA}, \beta_N = 2.9 \text{ (7\% above } n = 1 \text{ no-wall limit)}$
 - Codes run in perturbative mode
 - With/without energetic particles

$$-\omega_{\rm r}, \gamma, \nu_{\rm eff} = 0$$

$$\delta W_K \propto \int \left[\frac{\omega_{*N} + \left(\hat{\varepsilon} - \frac{3}{2}\right)\omega_{*T} + \omega_E}{\langle \omega_D \rangle + l\omega_b + \omega_E} \right] \hat{\varepsilon}^{\frac{5}{2}} e^{-\hat{\varepsilon}} d\hat{\varepsilon}$$

<u>Note</u>: Simplified resonant denominator due to assumptions

Shaped vs. near-circular Solov'ev cases have important q profile differences for benchmarking

Differences in how MARS, MISK, HAGIS consider mode dissipation at rational surfaces is thought to be key – will be a main focus of next steps

The kinetic term can be split into two pieces that depend on the eigenfunction or the frequencies, for code comparison

Eigenfunction benchmarking calculations were made to yield similar eigenfunctions, which are verified

- PEST, MARS-K compared with-wall RWM
 - In PEST we use the wall position that yields marginal stability
 - PEST, MARS-K, and MISHKA compared for no-wall ideal kink
- There are some differences at rational surfaces
 - May lead to stability differences between MISK and MARS-K calculations

Bounce frequency vs. pitch angle compares well between codes

here, ϵ_r is the inverse aspect ratio, s is the magnetic shear, K and E are the complete elliptic integrals of the first and second kind, and $\Lambda = \mu B_0/\epsilon$, where μ is the magnetic moment and ϵ is the kinetic energy.

Bounce and precession drift frequency radial profiles agree (deeply trapped regime shown)

$$\frac{\omega_b}{\sqrt{2\varepsilon/m_i}} = \frac{1}{q_0} \left(\frac{F^2}{1+2\epsilon_r} + \frac{\kappa^2 \epsilon_r^2}{q_0^2}\right)^{-1} \left[\frac{F^2 \epsilon_r}{2\left(1+2\epsilon_r\right)} + \frac{\kappa^2 \epsilon_r^3}{q_0^2} + \frac{\left(1-\kappa^2\right) \epsilon_r^2}{2q_0^2}\left(1+2\epsilon_r\right)\right]^{\frac{1}{2}}$$

Good agreement across entire radial profile

Significant issue found: precession drift frequencies did not

agree

- Clear difference in drift reversal point, even in near-circular case
- Issue found and corrected: metric coefficients for non-orthogonal grid incorrect in PEST interface to MISK

$$\frac{|\text{arge aspect ratio approximation}}{\langle \omega_D \rangle} = \frac{2q\Lambda}{R_0^2 B_0 \epsilon_r} \begin{bmatrix} (2s+1) \frac{E(k^2)}{K(k^2)} + 2s(k^2-1) - \frac{1}{2} \end{bmatrix} \qquad k = \begin{bmatrix} \frac{1-\Lambda + \epsilon_r \Lambda}{2\epsilon_r \Lambda} \end{bmatrix}^{\frac{1}{2}} \qquad \text{[Jucker et al., Phys. Plasmas 15, 112503 (2008)]} \end{bmatrix}$$

(2008)]

• Metric coefficients corrected in PEST interface to MISK

$$\omega_D = -\frac{1}{\tau} \int \frac{1}{v_{\parallel}} \mathbf{v}_{\mathbf{D}} \cdot \left(\boldsymbol{\nabla}\phi - \hat{q} \boldsymbol{\nabla}\theta \right) d\boldsymbol{\ell} - \frac{1}{\tau} \int_{\boldsymbol{\theta}(t)}^{\boldsymbol{\theta}(t')} \hat{q} d\theta$$

if Ψ and θ are orthogonal:

$$\hat{q}\mathbf{B} \times \boldsymbol{\nabla}\theta = \frac{\left(\mathbf{B}_{\phi} \cdot \boldsymbol{\nabla}\phi\right)\left(\mathbf{B}_{\phi} \times \boldsymbol{\nabla}\theta\right)}{\mathbf{B}_{\theta} \cdot \boldsymbol{\nabla}\theta}$$

But in PEST, Ψ and θ are non-orthogonal:

$$\hat{q}\mathbf{B} \times \boldsymbol{\nabla}\boldsymbol{\theta} = \underbrace{\mathbf{B}_{\phi} \cdot \boldsymbol{\nabla}\phi}_{\left(\mathbf{B}_{\phi} \cdot \boldsymbol{\nabla}\boldsymbol{\theta}\right) + \mathbf{B}_{\theta} \cdot \boldsymbol{\nabla}\boldsymbol{\theta}}_{\left(\mathbf{B}_{\phi} \times \boldsymbol{\nabla}\boldsymbol{\theta} + \mathbf{B}_{\theta} \times \boldsymbol{\nabla}\boldsymbol{\theta}\right)} \left(\mathbf{B}_{\phi} \times \boldsymbol{\nabla}\boldsymbol{\theta} + \mathbf{B}_{\theta} \times \boldsymbol{\nabla}\boldsymbol{\theta}\right)$$

<u>How does ω_D correction effect NSTX results</u>? Mostly affects outer

surfaces; characteristic change of $\gamma \tau_w$ with ω_{ϕ} is the same.

<u>RWM stability vs. $ω_{\phi}$ (contours of $\gamma \tau_{w}$)</u>

- Affects magnitude of δW_κ, but not trends
- In this case, agreement with the experimental
 - marginal point improves
 Calculations continue to
 - Calculations continue to determine the effect of the correction on wider range of cases

