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Long-Wavelength MHD Stability at High Pressure Required 
for ITER and Other Next-Step Devices 

• Motivation 
— The resistive wall mode (RWM) is a primary cause of plasma disruption at 

high β 
— Understanding passive stabilization physics determining RWM stability is 

critical to extrapolate stability requirements for future devices 
 

• Very brief history 
— Early theory: RWM can be stabilized by sufficient plasma rotation 
— Critical ωφ for passive stability assessed (Ωcrit)  
— Low levels of Ωcrit (< 0.5% Alfven at q =2) suggested 
— RWMs found to be unstable at relatively high ωφ, and stability depends on 

profile, not simple scalar value – no simple, low Ωcrit! 
— Stability model including kinetic effects evaluated (NSTX) - can explain 

greater complexity of RWM marginal stability 
— Present effort: comparison of stability model in codes and experiments 
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MARS-K ITER Results 

MARS-K perturbative approach MARS-K self-consistent approach 

without alphas 

with alphas 

without alphas 

with alphas 

• Alphas are only 
slightly stabilizing 

• Self-consistent 
approach much 
more unstable 
– How can γτw be 

50? 
 

[Y. Liu, Nucl. Fusion 50 
095008 (2010)] 
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Finite Orbit Width Kinetic damping of RWMs 

For typical MAST case, 
simple beam distribution 

• Orbit widths can be 
very important for fast 
ions 

• Use guiding-centre 
following code to 
capture this physics 

• RWM passively stable in ITER Advanced Scenario 
due to kinetic damping 

• Only capture these effects by including orbit widths 
• Sensitive to rotation, so should not be relied upon! 

HAGIS code  
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ITER RWM stability 
• Including damping from fast ions allows RWM to be 

passively stabilised above target pressure 
HAGIS code  
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• ITER requires alpha particles 
for stabilization across all 
rotation values. 
– Quantitatively different, but 

generally consistent with previously 
analyzed case (in: [J.W. Berkery et 
al., Phys. Plasmas 17, 082504 
(2010)]) 

• Correction to ωD makes 
calculation more stable, but 
doesn’t affect the general 
conclusions 

MIKS results: ITER requires alpha particles for RWM stability 
across all rotation values 

γτw contours vs. βα and ωφ 

unstable 

stable 

ex
pe

ct
ed

 ω
φ

 

expected 
βα 
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Kinetic RWM stability analysis started with MISK for a 
greater set of ITER advanced scenario equilibria 

[F. Poli et al., submitted to Nucl. Fusion (2012)] 

34039 34041 
34041 

34041 
34039 

34039 
34001 

34011 
34036 

34001 
34011 

34036 
34036 

34011 
34001 

• Five discharges selected 
— Full discharge evolutions – created by combination of TSC and TRANSP codes 
— Range of βN = 2.65 – 3.25; ideal n=1 no-wall unstable 
— Have internal transport barriers 

• Include EPs from: 33MW N-NBI (D), 20 MW IC, 40 MW LH 
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Various parameters vs. shot number 



March 15, 2012 9 NSTX-U Rochester – ITER (Berkery) 

The eigenfunctions (from PEST) all are “infernal”-like modes 

Note scales are different: this one has 
the smallest peak 

34001 

34039 34041 

34011 

34036 

[F. Poli et al., submitted to Nucl. Fusion (2012)] 
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PEST Fluid δW results 

34001 

34039 34041 

34011 34036 
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Profiles, 34001 @ 2500s 
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Notes on MISK δWK results with deuterium and tritium 

Splitting to 50% deuterium and 50% tritium makes very little difference (vs. 100% deuterium). Need to 
recheck the effect on Alfven layers.  

go like m-1/2 

When including alpha particles, I had to pay close attention to the 50% deuterium and 50% tritium mix, 
because it matters for the alpha’s slowing-down distribution: 

Note: I assumed alpha particles were isotropic (as usual).  Nikolai has said that alphas can be beam-like in 
ITER, especially near the edge.  I should ask him about that. 
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MISK Kinetic δWK results, thermal particles only 

34001 

34039 34041 

34011 34036 

Kinetic effects basically 
continually decrease with shot 
number.  What is causing this?  
Have to look in detail. 
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Results with alpha particles included 

Alpha particles provide a roughly 
constant increment to δWK, as 
expected.  
Interestingly, the imaginary 
increment is roughly the same as 
the real increment, which is 
unexpected. 

34001 

34039 34041 

34011 34036 
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Various parameters vs. shot number 

Thermal only 
Alphas only 
Both 
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Initial analysis: Stable region appears at low rotation with 
no alpha particles – may be due to “infernal” eigenfunction 

Re(δWK) Im(δWK) 
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With alphas

Without alphas

ωφ0 [kHz] ωφ0 [kHz] ωφ0 [kHz] 

γτw 

unstable 
stable 

ωφ0 =1.8 kHz 

ωφ0 =2.7 kHz 

[F. Poli et al., submitted to Nucl. Fusion (2012)] 

1 2 

1 

2 

1 2 

Precession drift resonances 

Higher ωφ = no core resonance 

≈0 

• Stable regions found 
with no alphas 

— Low ωφ 

— Unstable region at 
higher ωφ 
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When resonances are close to the rational surface, MISK 
might not properly include them 
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• Resonance near the q=2 surface 
— MISK Alfven layer scheme might cut off 

important effects (between 1 and 2) 

— How can we deal with this? 
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Energetic particle distribution function 34041 @ 400s 

• EPDF from TRANSP is 
complex 

— Multiple heating sources 

— Can attempt to model it with 
Gaussian distributions 

Model attempt 
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xxx 
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Some figures from Francesca’s paper 
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Some figures from Francesca’s paper 
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Some figures from Francesca’s paper 
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PEST Fluid δW results 

34039 @ 2500s 
Marginal b = 0.414  
Marginal eigenvalue = -0.3469e-5  
δWinf = -0.15478102e-1 
δWb = 0.53414071e-2 (b = 0.35) 
βN = 3.0790 
p0/<p> = 2.7543 
qmin = 1.93668 
li = 0.7493 

34041 @ 2500s 
Marginal b = 0.789  
Marginal eigenvalue = -0.6606e-6  
δWinf = -0.72005936e-2 
δWb = 0.30589234e-1 (b = 0.35) 
βN = 3.2207 
p0/<p> = 2.6452 
qmin = 2.09046 
li = 0.7130 

Results with the real wall are very similar 
to a conformal wall at b = 0.35, so we have 
used the conformal wall. 

34001 @ 2500s 
Marginal b = 1.20  
Marginal eigenvalue = -0.1883e-5  
δWinf = -0.2246451e-2 
δWb = 0.3334449e-1 (b = 0.35) 
βN = 2.7038 
p0/<p> = 2.8950 
qmin = 1.66856 
li = 0.8036 

34011 @ 2500s 
Marginal b = 0.561  
Marginal eigenvalue = -0.2105e-5  
δWinf = -0.1098658e-1 
δWb = 0.1593027e-1 (b = 0.35) 
βN = 2.8645 
p0/<p> = 2.8984 
qmin = 1.71432 
li = 0.8088 

34036 @ 2500s 
Marginal b = 0.555  
Marginal eigenvalue = -0.9399e-5  
δWinf = -0.1035962e-1 
δWb = 0.1456835e-1 (b = 0.35) 
βN = 2.8045 
p0/<p> = 2.7648 
qmin = 1.82644 
li = 0.7772 
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Profiles, 34001 @ 2500s 

Compare to figures from 
[F. Poli et al., submitted to 
Nucl. Fusion (2012)] 
(green profile is same shot, 
but at t = 2000s) 

pressure 

q 
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Profiles, 34011 @ 2500s 
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Profiles, 34011 @ 2500s 
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Profiles, 34036 @ 2500s 
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Profiles, 34039 @ 2500s 
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Profiles, 34041 @ 2500s 
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Various parameters vs. shot number 
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Results with scaled rotation profiles 

ω = ω0(1-Ψn) 
Nominal ω0 = 3kHz 

34039 34041 

Still working on this 
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Energetic particle distribution function 34039 @ 400s 
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