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Abstract

I. INTRODUCTION

Introduction?

II. CODES

A. AEGIS

AEGIS

B. HAGIS

MISHKA
HAGIS

C. MARS-K

MARS-K

D. MISK

PEST1

MISK2 (used in:3–10).
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III. EQUILIBRIA

A. Solov’ev Equilibrium

The Solov’ev equilibrium is an analytical equilibrium solution to the Grad-Shafranov equation11,12. In MARS-K, the
Solov’ev equilibrium is written13:

F (ψ) = 1. (1)

µ0

B2
0

P (ψ) = −1 + κ2

κR3
0q0

ψ. (2)

ψ =
κ

2R3
0q0

[
R2Z2

κ2
+

1

4

(
R2 −R2

0

)2 − ϵ2aR
4
0

]
. (3)

This ψ ranges from a negative value at the axis (−ψ0) to zero at the edge. A normalized flux can be written
ψn = ψ/ψ0 +1, which goes from 0 on axis to 1 at the edge. Three quantities must be specified: κ, q0, and ϵa = a/R0.
The plasma boundary is specified by:

R = R0 (1 + 2ϵa cos θ)
1
2 , (4)

Z =
R0ϵaκ sin θ

(1 + 2ϵa cos θ)
1
2

. (5)

MISK uses the PEST code1 to provide the eigenfunction and fluid δW terms. The Solov’ev equilibrium can be
explicitly input into PEST, and it is written:

F (Ψ) = 1. (6)

µ0

B2
0

P (Ψ) = p0 −
Ψ

2π

√
2c1p0(1 + c23)

Ψlim
. (7)

Ψ = c1

[
Z2
(
R2 − c2

)
+
c23
4

(
R2 −R2

0

)2]
. (8)

Here the PEST Ψ goes from 0 at the axis to a positive value, Ψlim, at the edge, and is related to the MARS ψ by:

ψ = (Ψ−Ψlim) /2π. (9)

The two methods are exactly equivalent when:

c1 =
1

2κR3
0q0

2π (10)

c2 = 0 (11)

c3 = κ (12)

Ψlim =
ϵ2aR0κ

2q0
2π (13)

p0 =
1 + κ2

2

ϵ2a
R2

0q
2
0

(14)

αp =

√
2c1p0(1 + c23)

Ψlim
=

1 + κ2

κq0R3
0

. (15)
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FIG. 1. a) The Solov’ev 1 equilibrium and b) the Solov’ev 3 equilibrium, showing flux surfaces at the edge (blue) and
r/R0 = 0.02, 0.08, and 0.18 (red). These last three are compared to their equivalent circles (dashed). Finally, conformal walls
having rw/a = 1.15 for Solov’ev 1 and rw/a = 1.10 for Solov’ev 3 are shown in black (see section VIII).
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FIG. 2. a) The Solov’ev 1 equilibrium and b) Solov’ev 3 equilibrium q profiles.

To use the analytical Solov’ev equilibrium in PEST, one sets &glotcl lanal=.true., in both mapin and modin.
Then one specifies the above quantities in mapin where c1, c2, and c3 are listed under &kerdat as c1, c2, and c3, p0
is listed under &prof as p0, Ψlim is listed under &magax as psilim, and R0 is listed under &size as r. Also, αp must
be set in modin under &cprofl as alphap.

1. Solov’ev 1

The equilibrium designated “Solov’ev 1” was used in Ref. [13], and is near-circular (Fig. 1a), with no rational
surfaces (Fig. 2a). It is specified by the parameters κ = 1, q0 = 1.2, and ϵa = 0.2, and has a qedge = 1.41371.
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FIG. 3. The ITER equilibrium, showing a flux surface at the edge (blue) and r/R0 = 0.18 (red). Also shown are the ITER
double wall (black), and a conformal wall with rw/a = 1.5 (green).
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FIG. 4. The ITER equilibrium q profile.

2. Solov’ev 3

The equilibrium designated “Solov’ev 3” was also used in Ref. [13]. This equilibrium is shaped (Fig. 1b), and
contains the q = 2 and 3 rational surfaces within the plasma (Fig. 2b). It is specified by the parameters κ = 1.6,
q0 = 1.9, and ϵa = 0.33, and has a qedge = 3.263.

B. ITER

The ITER equilibrium used is the same as is used in WG-7, using the current design of the ITER target for 9 MA
operation14, with βN = 2.9. It has R0 = 6.2 m, B0 = 5.3 T, the shape shown in Fig. 3 and the q profile shown in
Fig. 4.
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IV. FREQUENCY COMPARISONS

A. Density, Temperature, Pressure, and Rotation Frequency Profiles

We will assume for the Solov’ev cases that there are no energetic particles, only thermal ions and electrons, and that
ne = ni and Te = Ti. Also, for the purposes of determining P from Eqs. 2 or 7, we now set R0 = 1m and B0 = 1T.
Then the pressure has the form P = P0(1 − ψn), with P0 = 2.210 × 104 Pa for Solov’ev 1, and P0 = 4.273 × 104 Pa
for Solov’ev 3.
Finally we must specify the density profile n(Ψ). For the Solov’ev cases, we use n = n0(1−0.7Ψn). Then the density

on axis, n0, is determined by specifying (ωci/ωA)0, where ωA0 = B0/(R0
√
µ0mini0) and ωci0 = eB0/mi = 47.906

MHz. For the comparisons here, we will use (ωci/ωA)0 = 121, to be consistent with Ref. [13], even though this results
in the values of ωA0 = 395.914 kHz and the unrealistically high density n0 = 1.518× 1021 m−3.
The temperature profile is then determined from T = P/(2n). For the Solov’ev cases this means T = (P0/2n0)(1−

Ψn)/(1− 0.7Ψn).
For the Solov’ev cases we will use the E × B frequency profile ωE = ωE0 (1−Ψn), and a range of constant values

of ωE0. For the moment, we will assume ωE/ωA0 = 1 × 10−2 or ωE0 = 3.959 kHz as a nominal value. The toroidal
rotation frequency can then be found by a radial force balance so that ωrot = ωE + ωi

∗N + ωi
∗T , where ω

i
∗N and ωi

∗T
are defined in the next subsection.
For the ITER case instead of using analytically prescribed functions for the pressure, density, temperature, and

rotation, we will use profiles determined for the WG7 ITER equilibrium. Additionally, the ITER case will have three
separate species, each with their own pressure: ions, electrons, and alpha particles. The following are given, as profiles
of Ψ: nα/(ne + ni), ne, Te, Ti, Pα/(Pe + Pi), and ωrot. The ion density is taken to be equal to the electron density,
ie. quasineutrality is not enforced. The ion and electron pressures are determined from Pe = neTe, and Pi = niTi,
which then determines Pα as well.
Figure 5 shows the profiles of density, pressure, and temperature, normalized to the axis values, which are given

in Table I. Figure 5 also shows profiles of rotation and the diamagnetic frequencies, ω∗N and ω∗T . These are also
normalized to the axis values, found in Table II, along with the consistent ωE0 values.

B. Diamagnetic Frequencies

The density and temperature gradient components of the diamagnetic frequency are defined in SI units (Hz):

ωj
∗N = − Tj

2πZjenj

dnj

dΨ
, (16)

ωj
∗T = − 1

2πZje

dTj
dΨ

. (17)

For the Solov’ev equilibria these can be written analytically as:

ωi
∗N = −ωe

∗N =
0.7T0/e

2πΨa

(
1−Ψn

(1− 0.7Ψn)
2

)
, (18)

ωi
∗T = −ωe

∗T =
0.3T0/e

2πΨa

(
1

(1− 0.7Ψn)
2

)
, (19)

where Ψa = −ψ0 = Ψlim/2π from Eq. 13.

C. Collision Frequency

Although in general collisionality can impact kinetic stability calculations, and there are various ways of expressing
collisionality7, for the comparisons here, all collision frequencies are taken to be zero.
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FIG. 5. Normalized profiles of a) density, b) pressure, c) temperature, d) rotation, e) ω∗N , and f) ω∗T .

ni0[10
19m−3] ni0[10

19m−3] nα0[10
19m−3] pi0 [kPa] pe0 [kPa] pα0 [kPa] Ti0 [keV] Te0 [keV]

Solov’ev 1
151.795 0

11.052
0

0.045

Solov’ev 3 21.365 0.088

ITER 7.220 0.167 362.306 396.200 156.739 31.320 34.250

TABLE I. Density, pressure, and temperature values on axis for each of the cases.

ωrot0 [kHz] ωE0 [kHz] ω∗Ne0 [kHz] ω∗Ni0 [kHz] ω∗Te0 [kHz] ω∗Ti0 [kHz]

Solov’ev 1 4.393
3.959∗

0.304 0.130

Solov’ev 3 4.264 0.213 0.091

ITER 6.032∗ 3.998 -0.154 0.140 -0.960 1.805

TABLE II. Rotation frequency, ωE , ω∗N , and ω∗T values on axis for each of the cases. ∗nominal values.
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D. Bounce Frequency

Figure 6a shows the normalized, dimensionless ion bounce frequencies calculated by MISK and MARS-K compared
to the large aspect ratio approximation, using the Solov’ev 1 equilibrium at the ϵr = 0.08, ψn = 0.160 surface vs. Λ.
Figure 7a shows the normalized ion bounce frequencies calculated by MISK and MARS-K compared to the large aspect
ratio approximation, using the Solov’ev 3 equilibrium at the ϵr = 0.33, ψn = 1 surface (the plasma boundary) vs. Λ.
Figure 8a shows the normalized ion bounce frequencies calculated by MISK and MARS-K, using the ITER equilibrium

at the ϵr = 0.322, ψn = 0.982 surface (very close to the plasma boundary) vs. Λ.
Figure 9a shows the normalized ion bounce frequencies calculated by MISK and MARS-K at maximum Λ compared

to the deeply trapped particle limit, using the Solov’ev 1 equilibrium and the Solov’ev 3 equilibrium vs. ϵr.

1. Large Aspect Ratio Formula

In the large aspect ratio limit, the particle bounce frequency can be written15,16:

ωb√
2ε/mi

=

√
2ϵrΛ

4qR0

π

K(k)
(trapped), (20)

ωb√
2ε/mi

=

√
1− Λ + ϵrΛ

2qR0

π

K(1/k)
(circulating). (21)

where Λ = µB0/ε, ϵr = r/R0 (with r = R−R0), K is the complete elliptic integral of the first kind, and

k =

[
1− Λ + ϵrΛ

2ϵrΛ

] 1
2

. (22)

2. Deeply Trapped Particle Formula

In the limit of deeply trapped particles, one can show that for the Solov’ev equilibrium the bounce frequency can
be written:

ωb√
2ε/mi

=
1

q0

(
F 2

1 + 2ϵr
+
κ2ϵ2r
q20

)−1
[

F 2ϵr
2 (1 + 2ϵr)

+
κ2ϵ3r
q20

+

(
1− κ2

)
ϵ2r

2q20
(1 + 2ϵr)

] 1
2

(23)

3. General Formula
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FIG. 6. a) Ion bounce frequency and b) ion precession drift frequency calculated by MISK and MARS-K compared to the large
aspect ratio approximation for the ϵr = 0.08 surface of the Solov’ev 1 case, vs. Λ. The left branch of a) is for circulating ions
and the right branch is for trapped ions. Plot b) can be directly compared to the same one produced by MARS-K in Ref. [13],
Fig. 1(b).
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FIG. 7. a) Ion bounce frequency and b) ion precession drift frequency calculated by MISK and MARS-K compared to the large
aspect ratio approximation at the outer surface of the Solov’ev 3 case, vs. Λ. The left branch of a) is for circulating ions and
the right branch is for trapped ions.
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FIG. 8. a) Ion bounce frequency and b) ion precession drift frequency calculated by MISK and MARS-K at the ϵr = 0.322 surface
(very close to the outer surface) of the ITER case, vs. Λ. The left branch of a) is for circulating ions and the right branch is
for trapped ions.
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FIG. 9. a) Ion bounce frequency and b) ion precession drift frequency calculated by MISK and MARS-K at maximum Λ compared
to the deeply trapped particle limit for the Solov’ev 1 and 3 cases, vs. ϵr. Note: this figure is out of date for the MISK results
and needs to be remade if used.

E. Magnetic Precession Drift Frequency

Figure 6b shows the normalized ion precession drift frequencies calculated by MISK and MARS-K compared to the
large aspect ratio approximation, using the Solov’ev 1 equilibrium at the ϵr = 0.08, ψn = 0.160 surface, vs. Λ. A more
sophisticated analytic approach to calculate the precession drift frequency for arbitrarily shaped toroidal plasmas, by
doing a higher order expansion of the toroidal equilibrium in terms of toroidicity, elongation, triangularity, etc... was
also compared to this case and was quite close to the MARS-K result.
Figure 7b shows the normalized ion precession drift frequencies calculated by MISK and MARS-K compared to the

large aspect ratio approximation, using the Solov’ev 3 equilibrium at the ϵr = 0.33, ψn = 1 surface (the plasma
boundary), vs. Λ.
Figure 8a shows the normalized ion precession drift frequencies calculated by MISK and MARS-K, using the ITER

equilibrium at the ϵr = 0.322, ψn = 0.982 surface (very close to the plasma boundary) vs. Λ.
Figure 9b shows the normalized ion precession drift frequencies calculated by MISK and MARS-K at maximum Λ

compared to the deeply trapped particle limit, using the Solov’ev 1 equilibrium and the Solov’ev 3 equilibrium vs. ϵr.

1. Large Aspect Ratio Formula

The large aspect ratio precession drift frequency for trapped particles13,16:

ωD

ε/(Zje)
=

2qΛ

R2
0ϵrB0

[
(2s+ 1)

E (k)

K (k)
+ 2s

(
k2 − 1

)
− 1

2

]
, (24)

where s = (r/q)(dq/dr) is the magnetic shear and E is the complete elliptic integral of the second kind.
We can also write this expression in a way that separates it into a “main” term and a “q shear” term:

ωD

ε/(Zje)
=

2qΛ

R2
0ϵrB0

[
E (k)

K (k)
− 1

2

]
+

2qΛ

R2
0ϵrB0

[
2s

(
E (k)

K (k)
+ k2 − 1

)]
. (25)

2. Deeply Trapped Particle Formula

In the limit of deeply trapped particles, one can show that for the Solov’ev equilibrium the precession drift frequency
can be written:

ωD

ε/(Zje)
=

q0
R0κϵr

(
F 2

1 + 2ϵr
+
κ2ϵ2r
q20

)−1 [
F 2

(1 + 2ϵr)2
− κ2ϵr

q20

]
(26)
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3. General Formula

The general formula for the bounce-averaged magnetic precession drift frequency comes from Ref. [17], and is given
by:

ωD =
1

Zje

∂J/∂Ψ

∂J/∂ε
, (27)

where

J =

∫
mjv∥dℓ, (28)

is the equilibrium longitudinal invariant of the particle parallel motion. This equation for ωD is broken into two parts.
Using τ = ∂J/∂ε,17 we have:

ωD =
ε

Zje

1

τ

2

v2
∂

∂Ψ

(∫
v∥dℓ

)
(29)

=
ε

Zje

1

τ

2

v2

[∫
∂v∥

∂Ψ
dℓ+

∫
v∥
∂dℓ

∂Ψ

]
(30)

=
ε

Zje

1

τ

∫
dℓ

v∥

[
1

v2

∂v2∥

∂Ψ

]
+

ε

Zje

1

τ

∫
2v∥

v2
∂

∂Ψ

(
dℓ

dθ

)
dθ (31)

Let us now define17

g =
B2

θ

B

dℓ

dθ
. (32)

Then

ωD =
ε

Zje

1

τ

∫
dℓ

v∥

[
1

ε

∂

∂Ψ
(ε− µB)

]
+

ε

Zje

1

τ

∫
2v∥

v2
∂

∂Ψ

(
gB

B2
θ

)
dθ (33)

= − ε

Zje

1

τ

∫
dℓ

v∥

[
µ

ε

∂B

∂Ψ

]
+

ε

Zje

1

τ

∫
2v∥

v2
gB

B2
θ

(
1

g

∂g

∂Ψ
+
B2

θ

B

∂

∂Ψ

(
B

B2
θ

))
dθ (34)

= − ε

Zje

1

τ

∫
dℓ

v∥

[
Λ

B0

∂B

∂Ψ

]
+

ε

Zje

1

τ

∫
dℓ

2v∥

v2

[
B2

θ

B

∂

∂Ψ

(
B

B2
θ

)
− 1

B2
θ

(
µ0

∂p

∂Ψ
+

F

R2

∂F

∂Ψ

)]
, (35)

where we have used17

1

g

∂g

∂Ψ
= − 1

B2
θ

(
µ0

∂p

∂Ψ
+

F

R2

∂F

∂Ψ

)
. (36)

Equation 35 is the form for ωD used in MARS-K. The first term is called Dµ and the second term is DB . An equivalent
expression is used in MISK.
Note that at the turning points v∥ → 0 causes a singularity in Eq. 35, but this singularity is integrable.
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V. ENERGY INTEGRAL OF THE FREQUENCY RESONANCE FRACTION

A major part of the kinetic calculation is the energy integration of the frequency resonance fraction:

Iε (Ψ,Λ, l) =

∫ ∞

0

n
(
ω∗N +

(
ε̂− 3

2

)
ω∗T

)
+ nωE − ωr − iγ

n (ωD + (l + αnq)ωb)− iνeff + nωE − ωr − iγ
ε̂

5
2 e−ε̂dε̂. (37)

where ε̂ = ε/T , n is the toroidal mode number (not the density), and α = 0 for trapped particles or α = 1 for
circulating particles. This quantity can be evaluated based only upon the frequencies already described, for both
ions and electrons. Nominally, νeff = 0 as specified in subsection IVC, and we will take ωr = 0 and γ = 0. Note
that when collisionality is zero, having a small imaginary component (via γ) in the denominator is beneficial to avoid
singularities in the integration10. Since we are taking νeff = 0 and γ = 0, there are poles on the real energy axis,
which must be accounted for (see next subsection).
If we choose a particular Ψ surface, then ω∗N , ω∗T , and ωE are constants defined by Figs. 5d-f and Table II. The

precession drift and bounce frequencies are functions of both Λ and ε̂ still, as indicated in Figs. 6, 7, and 8. Performing
the energy integration, we can plot Iε as a function of Λ. Figure 10 shows each l component of Iε from -4 to 4 for
thermal ions in the Solov’ev 1 equilibrium at r/R0 = 0.08 (Ψn = 0.16), the same surface chosen in Fig. 6. Figures
11 and 12 show each l component of Iε from -4 to 4 for thermal ions in the Solov’ev 3 equilibrium at r/R0 = 0.252
(Ψn = 0.585, q = 2.5), and the ITER equilibrium at r/R0 = 0.322 (Ψn = 0.982, respectively.

A. Analytical Solutions

One major difference between MISK and MARS-K is that MISK performs this integration numerically, whereas MARS-K
performs it analytically16. Analytical solutions are possible only under certain constraints.

1. Kruskal-Oberman Limit

In the Kruskal-Oberman limit18, |ωE − ω| → ∞ and therefore

Iε (Ψ,Λ, l) → IKO
ε =

∫ ∞

0

ε̂
5
2 e−ε̂dε̂ =

15
√
π

8
. (38)

In this limit δWK is purely real, and independent of the mode-particle resonances. This allows a good check on the
|⟨H/ε̂⟩|2 part of the problem.

2. νeff = constant (no energy dependence), and l = 0 for trapped particles

This is the case for trapped particles without energy-dependent collisions, with only the precession drift and no
bounce frequency,

Iε =

∫ ∞

0

Ωa
∗ +Ωn + ε̂Ωb

∗
ε̂+Ωn

ε̂
5
2 e−ε̂dε̂, (39)

where Ωn = (nωE − ω − iνeff)/(nωD), Ωa
∗ = (nω∗N − 3

2nω∗T + iνeff)/(nωD), Ωb
∗ = ω∗T /ωD, and ωD = ωD ε̂ (ie. ωD is

the non-energy dependent portion of ωD). The solution is given in Ref. [16], Eq. 30:

Iε =
15

√
π

8
Ωb

∗ + 2
√
π
(
Ωn +Ωa

∗ − ΩnΩ
b
∗
) [3

8
− 1

4
Ωn +

1

2
Ω2

n + i
1

2
Ω

5
2
nZ
(
iΩ

1
2
n

)]
, (40)

where Z is the plasma dispersion function.
Note that the resonance condition is ε̂ = −Re(Ωn). Therefore this solution is valid and there are no poles on the

real, positive energy axis as long as Re(Ωn) > 0 or Im(Ωn) ̸= 0, ie. there exists some finite damping, γ + νeff ̸= 0. If
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there are poles along the path of integration, then their residues must be calculated. Equation 39 can be written as∫
f(z)dz, where z = ε̂, and the residue is given by

Res(f, z → −Ωn) = lim
z→−Ωn

(z +Ωn) f(z) =
(
Ωn +Ωa

∗ − ΩnΩ
b
∗
)
(−Ωn)

5
2 eΩn (41)

Finally, one must also be careful of the locations in (Ψ,Λ) space where there is a drift reversal (ωD goes through
zero). In this case, one can show that the analytical solution to Eq. 37 is:

Iε =
15
√
π

8

[
n (ω∗N + 2ω∗T ) + nωE − ωr − iγ

−iνeff + nωE − ωr − iγ

]
. (42)

When this analytical solution is used in MISK, we use Eq. 42 when Ωn > 1000 or Ωa
∗ > 1000 or Ωb

∗ > 1000. How
does MARS-K deal with it?

3. νeff = constant (no energy dependence), l ̸= 0 for trapped particles, and |ωD| ≪ |lωb|

This is the case again without energy-dependent collisions, for trapped particles with l ̸= 0 where the precession
drift frequency is neglected with respect to the bounce frequency. If we now define Ωn2 = (nωE − ω − iνeff)/(nlωb),

Ωa2
∗ = (nω∗N − 3

2nω∗T + iνeff)/(nlωb), Ω
b2
∗ = ω∗T /lωb, and ωb = ωbε̂

1
2 (ie. ωb is the non-energy dependent portion of

ωb), then

Iε =

∫ ∞

0

Ωa2
∗ +Ωn2 + ε̂Ωb2

∗
ωD

lωb
ε̂+ ε̂

1
2 +Ωn2

ε̂
5
2 e−ε̂dε̂. (43)

With ωD/lωb → 0 this has the analytical solution

Iε =− Ωb2
∗

(
15
√
π

8
Ωn2 − 6

)
+ 2

√
π
(
Ωn2 +Ωa2

∗ +Ω2
n2Ω

b2
∗
) [

−Ωn2

(
3

8
+

1

4
Ω2

n2 +
1

2
Ω4

n2

)
− 1

2
Ω6

n2Z (Ωn2)

+
1

2
√
π

(
Ω4

n2 +Ω2
n2 + 2

)
+

1

2
√
π
e−Ω2

n2

(
iπ − Ei(Ω2

n2) +
1

2
ln(Ω2

n2)−
1

2
ln(Ω−2

n2 )− 2 ln(Ωn2)

)]
. (44)

In this case, Eq. 43 has two residues when ωD/lωb is retained, which are given by:

Res(f, z = z1) =
2
(
Ωn2 +Ωa2

∗ + z21Ω
b2
∗
)
z61e

−z2
1

(z1 − z2)
, (45)

Res(f, z = z2) =
2
(
Ωn2 +Ωa2

∗ + z22Ω
b2
∗
)
z62e

−z2
2

(z2 − z1)
, (46)

with

z1 =
1

2

ωD

lωb

(
−1 +

√
1− 4

lωb

ωD
Ωn2

)
(47)

z2 =
1

2

ωD

lωb

(
−1−

√
1− 4

lωb

ωD
Ωn2

)
(48)



13

b)r/R0 = 0.08

l=-4

l=-3

l=-2

l=-1

l= 0

l= 1

l= 2

l= 3

l= 4
analytical

0.90 0.95 1.00 1.05 1.10 1.15
Λ = µ B0/ε

0

5

10

15

20

25

Im
(I
ε
)

      

 

 

 

 

 

 

a)

r/R0 = 0.08

l=-4

l=-3

l=-2

l=-1

l= 0

l= 1

l= 2

l= 3

l= 4
analytical

0.90 0.95 1.00 1.05 1.10 1.15
Λ = µ B0/ε

-10

-5

0

5

10

15
R

e
(I
ε
)

      

 

 

 

 

 

 

FIG. 10. a) Real and b) imaginary components of Iε for each l from -4 to 4, vs. Λ for thermal ions in the Solov’ev 1 equilibrium
at r/R0 = 0.08 (Ψn = 0.16), calculated by MISK. Solid lines are the usual numerical method, while dashed lines use the
analytical methods outlined in subsection VA.
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FIG. 11. a) Real and b) imaginary components of Iε for each l from -4 to 4, vs. Λ for thermal ions in the Solov’ev 3 equilibrium
at r/R0 = 0.252 (Ψn = 0.585, q = 2.5), calculated by MISK. Solid lines are the usual numerical method, while dashed lines use
the analytical methods outlined in subsection VA.
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FIG. 12. a) Real and b) imaginary components of Iε for each l from -4 to 4, vs. Λ for thermal ions in the ITER equilibrium
at r/R0 = 0.322 (Ψn = 0.982), calculated by MISK. Solid lines are the usual numerical method, while dashed lines use the
analytical methods outlined in subsection VA.
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FIG. 13. Normalized mass density profiles for the Solov’ev and ITER cases. The dashed lines are the approximations used in
PEST (nearly overlays in the Solov’ev case).

VI. EIGENFUNCTION COMPARISON

The normalized mass density profile, ρ/ρ0, affects the eigenfunction. For the Solov’ev case, the normalized mass
density profile ρ/ρ0 = (mene +mini +mαnα)/(mene0 +mini0 +mαnα0) reduces to ρ/ρ0 = 1− 0.7Ψn. For the ITER
case ρ/ρ0 is calculated from the individual density profiles and plotted in Fig. 13, along with the linear profile for the
Solov’ev cases. PEST is limited in the mass density profiles it can take as an input, so approximations are used, which
are shown in dashed lines.
Note that the PEST representation of ξ can be found in Ref. [19].
Figures 14a, 16a, and 18a compare the poloidal Fourier harmonics of the normal displacement ξ ·∇

√
Ψn vs.

√
Ψn for

an ideal kink mode without a wall computed by MARS-K, MISHKA, and PEST for the Solov’ev 1, Solov’ev 3, and ITER
cases, in PEST coordinates. The Fourier harmonics following this definition have more physical meaning (a better
separation between resonant and non-resonant harmonics) than using equal-arc coordinates. The same quantity is
plotted for the same equilibria in equal-arc coordinates in Figs. 14b, 16b, and 18b. Figure 16b can be directly compared
to Fig. 10(a) of Ref. [13].
As an approximation to the fluid RWM, MISK uses the marginally stable ideal kink with an ideal wall, as calculated

by PEST by moving the wall position progressively inward until the marginal point is found2. This eigenfunction
is a good approximation to the fluid RWM13. Figures 15, 17, and 19 compare the poloidal Fourier harmonics of
the normal displacement ξ · ∇

√
Ψn vs.

√
Ψn for a maginally stable ideal kink mode with an ideal wall computed by

PEST to the fluid RWM eigenfunction computed by MARS-K, for the three equilibria in PEST coordinates and equal-arc
coordinates. Since MISHKA does not include a resistive wall, it is not included in this comparison. Figure 17b can be
directly compared to the fluid RWM eigenfunction in Fig. 10(b) of Ref. [13].
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FIG. 14. Poloidal Fourier harmonics of the normal displacement for an ideal kink mode without a wall for the Solov’ev 3
equilibrium, as computed by MARS-K, MISHKA, and PEST, in a) PEST and b) equal-arc coordinate systems.
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FIG. 15. Poloidal Fourier harmonics of the normal displacement for the marginally stable ideal kink mode with an ideal wall
for the Solov’ev 1 equilibrium, as computed by PEST, and the fluid RWM eigenfunction as computed by MARS-K, in a) PEST and
b) equal-arc coordinate systems.
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FIG. 16. Poloidal Fourier harmonics of the normal displacement for an ideal kink mode without a wall for the Solov’ev 3
equilibrium, as computed by MARS-K, MISHKA, and PEST, in a) PEST and b) equal-arc coordinate systems.
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FIG. 17. Poloidal Fourier harmonics of the normal displacement for the marginally stable ideal kink mode with an ideal wall
for the Solov’ev 3 equilibrium, as computed by PEST, and the fluid RWM eigenfunction as computed by MARS-K, in a) PEST and
b) equal-arc coordinate systems.
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FIG. 18. Poloidal Fourier harmonics of the normal displacement for an ideal kink mode without a wall for the ITER equilibrium,
as computed by MARS-K, MISHKA, and PEST, in a) PEST and b) equal-arc coordinate systems.
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FIG. 19. Poloidal Fourier harmonics of the normal displacement for the marginally stable ideal kink mode with an ideal wall
for the ITER equilibrium, as computed by PEST, and the fluid RWM eigenfunction as computed by MARS-K, in a) PEST and b)
equal-arc coordinate systems.
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VII. THE PERTURBED LAGRANGIAN

Another major part of the kinetic calculation is the perturbed Lagrangian, written here for trapped particles:

⟨H/ε̂⟩ (Ψ,Λ, l) = 1

τ

∮
1√

1− ΛB
B0

[(
2− 3

ΛB

B0

)
(κ · ξ⊥)−

(
ΛB

B0

)
(∇ · ξ⊥)

]
e−ilωbtdℓ. (49)

Similarly to how the energy integral of the frequency resonance fraction can be calculated solely based on the
frequencies and encompasses all the energy dependence of the problem, the perturbed Lagrangian can be calculated
solely based on the eigenfunction, and indeed is the only place in the problem where the eigenfunction appears.
Like in section V with Iε̂, we can make plots of ⟨H/ε̂⟩ vs. Λ for particular Ψ surfaces. Figure 20 shows each l

component of ⟨H/ε̂⟩ from -4 to 4 in the Solov’ev 1 equilibrium at r/R0 = 0.08 (Ψn = 0.16), the same surface chosen
in Fig. 6. Figure 21 shows each l component of ⟨H/ε̂⟩ from -4 to 4 in the Solov’ev 3 equilibrium at r/R0 = 0.252
(Ψn = 0.585, q = 2.5).
Note that like the bounce and precession frequencies, this quantity has a singularity when v∥ → 0, but it is

integrable.
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FIG. 20. a) Real and b) imaginary components of ⟨H/ε̂⟩ for each l from -4 to 4, vs. Λ in the Solov’ev 1 equilibrium at
r/R0 = 0.08 (Ψn = 0.16), calculated by MISK.
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FIG. 21. a) Real and b) imaginary components of ⟨H/ε̂⟩ for each l from -4 to 4, vs. Λ in the Solov’ev 3 equilibrium at
r/R0 = 0.252 (Ψn = 0.585, q = 2.5), calculated by MISK.
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FIG. 22. a) Real and b) imaginary components of ⟨H/ε̂⟩ for each l from -4 to 4, vs. Λ in the ITER equilibrium at r/R0 = 0.322
(Ψn = 0.982), calculated by MISK.
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FIG. 23. The inverse fluid growth rate, normalized by the wall time, vs. normalized conformal wall position for the three cases
for: a) the ideal kink, and b) the marginally stable ideal kink mode with an ideal wall (PEST) or the fluid RWM (MARS-K). PEST
results are shown with dashed lines and open circles, MARS-K results with solid lines and solid circles. The circle markers shown
in b) indicate the values at the wall positions chosen for comparison.

VIII. FLUID δW TERMS

δW∞ and δWb are the fluid terms calculated with the wall at infinity or the actual “experimental” location b. In
this study we will use a conformal wall, so that b is the distance of the wall away from the plasma boundary, in units
of r/a, and the normalized wall position is rw/a = 1 + b. The absolute value of these δW quantities as calculated by
different codes is arbitrary. What really matters are the ratios. Therefore in this section we will report the quantity

γ̂−1
f = − δWb

δW∞
, (50)

which is the inverse fluid growth rate, normalized by the wall time.
Let us now also define δW∞ = δWF + δWS + δW∞

V , the sum of the plasma fluid, surface, and vacuum perturbed
potential energies when the wall is placed at infinity (the no-wall condition), and δWb = δWF + δWS + δW b

V , the sum
of the plasma fluid, surface, and vacuum δW terms when the wall is placed at a specific location b. The PEST code
uses the VACUUM code20 to calculate the δWV terms. The plasma fluid terms are equal regardless of the wall position.
The surface term arises when there is a finite pressure gradient at the plasma boundary. This term is not calculated
by MARS or PEST.
Once δW∞ is found, δWb, and therefore γ̂−1

f can be examined as a function of rw/a. This is shown for the three

cases in Fig. 23a for the ideal kink mode and can be directly compared to Ref. [13], Fig. 3, for the Solov’ev 1 case.
Here we will instead use the eigenfunction for the marginally stable ideal kink mode with an ideal wall in PEST
(approximating the fluid RWM) and the fluid RWM in MARS-K. Figure 23b shows γ̂−1

f vs. rw/a for these cases.

For the Solov’ev 1 case we will choose rw/a = 1.15, and for Solov’ev 3 rw/a = 1.10, to be consistent with Ref. [13],
even though the value of γ̂−1

f will be different than used in that work. See Fig. 1 for illustrations of these conformal

walls. For the ITER case, we choose both a conformal wall with rw/a = 1.5, or the actual ITER wall. See Fig. 3 for
illustrations of these walls. In PEST the wall position is chosen as the second inner-most black line in Fig. 3, which is
the center of the thick inner wall.
In PEST the fluid δW quantities have a dependency on the selection of Ψlim. For the Solov’ev cases Ψlim = 1 can

be used, but for the ITER case here we have used Ψlim = 0.9976, which results in qedge = 6.96168.
The results are given in Table III.

IX. KINETIC δWK

For trapped Maxwellian particles, the kinetic δW is given by
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rw/a δWF /(−δW∞) δW b
V /(−δW∞) γ̂−1

f = δWb/(−δW∞)

Solov’ev 1 1.15
-1.814 3.001 1.187

-1.793 2.915 1.122

Solov’ev 3 1.10
-2.257 4.087 1.830

-2.210 4.547 2.337

ITER
1.50

-6.284 6.966 0.682

0.677

actual
1.664

TABLE III. MARS-K results are red, PEST results are blue. Note that δWS = 0, so δW∞
V /(−δW∞) can be inferred from

1 + δWF /(−δW∞).

δWK = −
√
π

2

∫ Ψa

0

nT

B0

∫ B0/Bmin

B0/Bmax

τ
∑
l

|⟨H/ε̂⟩|2Iε̂dΛdΨ. (51)

One can see that the energy integral involves the previously defined quantities Iε̂ and ⟨H/ε̂⟩ in a straightforward
way.
Once again, the absolute value of δWK is meaningless, so we will report the values found as −δWK/δW∞, broken

into its various contributions in table IV.
For the Solov’ev 1 case, with all the nominal frequency profiles from section IV, MISK finds quite small values of

−Re(δWK)/δW∞ = 0.0243 and −Im(δWK)/δW∞ = 0.0280. There are no energetic particles for this case, and no
rational surfaces, so there is no Alvén layer contribution.
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thermal ions thermal electrons
Alfvén Layer Total

trapped
circulating trapped (l = 0 only)

l = 0 l ̸= 0

real imag real imag real imag real imag real imag real imag

Solov’ev 1
8.46×10-2 -1.48×10-2 3.10×10-3 -5.11×10-5 -2.10×10-3 -1.33×10-4 -6.00×10-2 2.95×10-3 2.56×10-2 -1.21×10-2

1.45×10-2 2.23×10-6 3.84×10-3 8.12×10-3 -8.90×10-3 2.05×10-2 1.58×10-2 3.68×10-5 0 0 2.51×10-2 2.87×10-2

Solov’ev 3
2.08×10-1 -3.43×10-1

1.90×10-1 2.50×10-6 -8.69×10-3 1.45×10-2 4.03×10-3 3.93×10-2 1.90×10-1 6.46×10-5 -3.81×10-5 -1.20×10-5 3.71×10-1 1.46×10-2

ITER
8.52×10-1 3.05×10-4 -9.96×10-2 2.68×10-2 -2.23×10-1 3.78×10-2 1.35×10-1 -1.64×10-2 -1.03×10-2 -7.95×10-1 6.53×10-1 -7.46×10-1

TABLE IV. δWK/(−δW∞). MARS-K results are red, MISK results are blue.
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A. The Kruskal-Oberman Limit

The results for the Kruskal-Oberman limit described in subsection VA1 are given in Table V. In this case circulating
electrons and trapped electrons with a bounce (l ̸= 0) resonance become important, so they are included as well.

thermal ions thermal electrons
Totaltrapped

circulating
trapped

circulating
l = 0 l ̸= 0 l = 0 l ̸= 0

Solov’ev 1
1.57× 10−1

1.11× 10−2 1.02× 10−2 9.69× 10−2 1.11× 10−2 1.02× 10−2 9.69× 10−2 2.36× 10−1

Solov’ev 3
1.16× 10−1 4.84× 10−2 1.80× 10−1 1.16× 10−1 4.84× 10−2 1.80× 10−1 6.89× 10−1

ITER
5.83× 10−1 5.20× 10−1 2.74 7.02× 10−1 6.01× 10−1 3.30 8.46

TABLE V. δWK/(−δW∞) in the Kruskal-Oberman limit (|ωE − ω| → ∞). MARS-K results are red, MISK results are blue. All
values are real, and the total doe snot include the Alfvén layer contribution.

B. MISK Numerical vs. Analytic Energy Integral Results

MISK can now be run with the energy integral being calculated numerical, as usual, or analytically for trapped
thermal ions and electrons, according to the formulae in Sec. VA. The results for the zero damping case are given in
table VII. The real parts are equal, while the imaginary parts are different. This may be indicative of the fact that
the analytical approach takes into account poles on the real axis, which the numerical approach does not. However,
we have found that the resulting residues are only a part of the difference. This difference goes away when damping
is increased (finite γ).

thermal ions thermal electrons

trapped trapped

l = 0 l ̸= 0 l = 0 l ̸= 0

real imag real imag real imag real imag

Solov’ev 1
1.45× 10−2 2.23× 10−6 3.84× 10−3 8.12× 10−3 1.58× 10−2 3.68× 10−5 −7.67× 10−6 2.11× 10−8

1.45× 10−2 4.47× 10−6 4.40× 10−3 8.34× 10−3 1.58× 10−2 7.38× 10−5 −8.01× 01−6 5.07× 10−10

Solov’ev 3
1.90× 10−1 2.50× 10−6 −8.69× 10−3 1.45× 10−2 1.90× 10−1 6.46× 10−5 −7.55× 10−6 4.79× 10−8

1.90× 10−1 4.88× 10−6 −8.30× 10−3 1.56× 10−2 1.90× 10−1 1.27× 10−4 −7.94× 10−6 4.36× 10−11

ITER
8.52× 10−1 3.05× 10−4 −9.96× 10−2 2.68× 10−2 1.35× 10−1 −1.64× 10−2 −2.65× 10−5 −1.11× 10−5

8.52× 10−1 6.11× 10−4 −1.04× 10−1 3.56× 10−2 1.35× 10−1 −3.30× 10−2 −4.34× 10−5 −2.97× 10−6

TABLE VI. δWK/(−δW∞). MISK numerical (usual) results are blue, MISK analytic results are in black. This is for the case of
no damping (νeff = 0, and γ = 0.

C. Convergence vs. Damping Parameter

A damping parameter in the denominator of the resonance operator can come either from the finite growth rate of
the RWM (γ), or from collisonality (νeff). δWK should converge to the same value as that of the “ideal” case without
any damping, when these damping terms approach zero. Figure 24 shows the results of such a convergence study for
the Solov’ev 1 case.
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FIG. 24. Convergence of δWK versus damping for the Solov’ev 1 case, as calculated by a) MARS-K, and b) MISK. For MISK, blue
indicates numerical evaluation of the energy integral and black indicates analytical.

X. GROWTH RATE AND MODE ROTATION FREQUENCY

The RWM dispersion relation can be written2,13,21:

(γ − iωr)τw = −δW∞ + δWK

δWb + δWK
. (52)

The change in potential energy due to kinetic effects, δWK , in general has both real and imaginary parts. The real
part of ω is the mode rotation frequency, and is given by:

ωrτw =
Im(δWK)(δWb − δW∞)

(δWb +Re(δWK))2 + (Im(δWK))2
, (53)

and solving for the imaginary part, we find the normalized growth rate:

γτw = −δW∞δWb + (Im(δWK))2 + (Re(δWK))(δW∞ + δWb +Re(δWK))

(δWb +Re(δWK))2 + (Im(δWK))2
. (54)

For the Solov’ev 1 case, with the nominal frequency profiles, MISK finds that the growth rate is barely changed
from the fluid case. This is consistent with the previous analysis in Ref. [13], although, again, the cases are different
because of the different eigenfunction used, as well as the different ωE profile.
The results are given in table VII.

rw/a γτw ωτw

Solov’ev 1 1.15
8.04× 10−1 −1.80× 10−2

8.49× 10−1 −4.62× 10−2

Solov’ev 3 1.10
3.50× 10−1 −2.28× 10−1

2.32× 10−1 −6.65× 10−3

ITER
1.50

−4.12× 10−2 5.38× 10−1

actual

TABLE VII. MARS-K results are red, MISK results are blue.
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