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I. INTRODUCTION

Tokamak fusion plasmas generate energy most efficiently when the ratio of plasma stored energy to magnetic
confining field energy is high. This ratio can be characterized by the quantity beta-normal: Sy. When a plasma
reaches high Sy, an MHD kink-ballooning mode of instability can begin to grow. This can lead to a disruption of
the plasma current and a loss of confinement on the relatively short Alfvén time scale. However, the growth rate of
this mode can be slowed quite considerably by the presence of a close-fitting wall around the plasma. This forces the
magnetic perturbations penetrate the wall in order to grow, and the time scale for that penetration is much longer
than the Alfvén time scale. In fact, if the wall is perfectly conducting the time is infinite and the plasma is completely
stabilized. If the wall has some resistance then the time scale is characterized by a wall time, 7,,. When the mode is
converted to the more slowly growing mode in this way, it is called the resistive wall mode (RWM).

The plasma, is stable up to a value of B}\l,o_w“”. Above this “no-wall” limit the plasma is unstable to kink-ballooning
modes when no wall is present, or the resistive wall mode when a wall is present. The RWM grows on a much slower
time scale, but it is still fast compared to the duration of the plasma shot. Therefore it is necessary to stabilize this
mode as well. Originally it was thought that the presence of a resistive wall could slow down the kink-ballooning mode,
but that the RWM itself could not be stabilized. Experiments soon found, however, that tokamaks could be stably
operated above ﬂ?,o_wa”l’z. It was then postulated theoretically that the RWM can be stabilized by a combination of
plasma rotational inertia and an energy dissipation mechanism3 . Simple models proved to be insufficient to explain
experimental results>%®, however, and recently theoretical investigation has turned to the kinetic effects on plasma
stability?” ¥ 24, Here we will derive the theoretical model for those kinetic effects in detail.

Let us consider all plasma quantities to be perturbed in time by a mode of instability from their equilibrium states
with the following form?°: 2 = xy 4 Ze~*~""?, Here, x is any quantity such as position, velocity, pressure, etc... We
use the notation w = w, 4 iy for the complex mode frequency, so that w, is the real mode rotation frequency, and ~y
is the growth rate. Also, wg is the plasma toroidal rotation frequency, and n is the toroidal mode number. Now, we
consider what happens when the plasma is displaced perpendicular to the magnetic field lines a small distance from
its equilibrium position of & = 0, so, £, = €, e~ “!~%  The goal is to find out whether this small displacement is
stable or unstable, i.e. whether it will damp (y < 0) or grow exponentially in time (y > 0).

We will outline two general approaches to calculating stability by determining w. The first approach, outlined
briefly in Sec. II is to write a self-consistent set of equations for w in terms of known quantities and then to solve
the system. This approach has the advantage of self-consistency between the calculation of the mode frequency w
and the mode displacement &, . The second approach, which is the subject of the rest of this work, is to write an
expression for w in terms of changes in potential energy (6W) called a dispersion relation, and then solve for the §W
terms. This approach has the advantage of clarity in distinguishing the various stabilizing and destabilizing effects.
In Sec. III we begin with a conservation of energy equation and decompose it into constituent kinetic and potential
energy terms. This equation becomes the basis of the dispersion relation for the RWM that we outline in Sec. IV.
Although the concentration here is on the RWM, the physics involved is also directly applicable to internal kink
modes?% or neoclassical toroidal viscosity® . In this work we will concentrate on the change of potential energy that
arises from the perturbed kinetic pressure and is written in terms of the perturbed distribution function of the various
species of particles in the plasma. This perturbed distribution function is derived from the drift kinetic equation
in Sec. V without any assumption of pressure isotropy. This results in anisotropy corrections to the fluid terms in
Sec. VI, and a general form for §Wg and the electrostatic effect, that depend upon the distribution function of the
particles considered, in Sec. VII. In Sec. VIII the dW equations are reformulated for easy calculation. Finally, in



Sec. IX the kinetic effects of particles with four specific distribution functions: Maxwellian, bi-Maxwellian, isotropic
slowing-down, and anisotropic slowing-down, are considered.



Il. A SELF-CONSISTENT SET OF EQUATIONS FOR w

It is possible to derive a self-consistent set of equations for w?>27. To begin we will consider the perturbed velocity
of the plasma due to the perpendicular displacement & discussed in the introduction (it can be shown that a parallel
displacement & is akin to reorientation of the frame of reference, and does not contribute to the kinetic effects that
we are concerned with in this work” ). The perturbed velocity is given by

o d6L 081 o
so that
(-iw)€L =v—-v-VE -V v (2)
(_iw) £J_ = v — (Vo + {,e—iwt—imﬁ) 3 Vé’J_e—iwt—ingb _ éJ_e—iwt—ingbV . (Vo + {,e—iwt—ingb) ) (3)

Neglecting the quantities of second order in e~*!~"¢ e have,

—iw€L =V —(vo-V)€L — &L (V- vo). (4)

Note that

Vo = RQQ]V(ﬁ (5)

is the toroidal velocity?®, with R the major radius and 2, the toroidal rotation frequency for particles j. For thermal
ions and electrons, ; = wy, the bulk plasma frequency, but for energetic particles €); ~ w,;, the diamagnetic
frequency, which can be seen from radial force balance (see appendix A). One possible simplification is to use a
rigid rotor assumption, in which case vg = Rﬂjé and )5 is a constant, rather than a function of the magnetic flux
coordinate, V.

Now, we can see that

Vo - V = —ian, (6)

and therefore for thermal particles Eq. 7 can be written:

(v +i(nwg —wr)) €L =V —E€1LV - vo. (7)

This is the first equation in the desired set of self-consistent equations. These equations will be noted as we proceed,
and then gathered together at the end of the section.
Next, we proceed with a force balance equation for the plasma:

dv

S =ixB-V.E (8)

p

where P is the pressure tensor. Expanding the total derivative and linearizing the equation (expanding the perturbed
quantities in the same manner as above), for the left hand side we find:

dv ov
P =P TPV VY (9)
—_ (po + ﬁe—iwt—inqﬁ) (—iw) ({,e—iwt—inzb) + (po +p~e—iwt—in¢) (VO +\~,e—iwt—in¢) v/ (VO _’_{,e—iwt—inqﬁ) )

(10)

Retaining only terms of first order in e ™! ~"¢ we have



dv

PE — (—iw) pO{,e—iwt—inqﬁ + pove—iwt—irub A VV() + POV - V{/e—iwt—ind) + ﬁe—iwt—in(bvo A VVo.

Now dividing both sides of Eq. 8 by e =% e have,

(—iw) (po¥) + po (Vo - V¥V 4+ ¥ - Vvg) 4 pvo - Vvo = jo X B+ jx Bg — V - P, (12)

or

po(y +i(nwy — wy))V = jo X B+jxBo—-V -P— pov - Vvg — pvg - Vvg. (13)
This is the second equation in the self-consistent set. The perturbed current, j is given by Ampere’s Law:

j= iv x B, (14)

which is also an equation in the self-consistent set. The perturbed magnetic field, ]é, is found through Faraday’s
induction equation

0B
= E 1
and Ohm’s law
E+v x B =nj. (16)
Together these two equations result in:
0B
anx(va)—Vx(nj). (17)

Linearizing, we find

(_iw)Befiwtfinqb -V x ((VO + {,efiwtfimb) ~ (BO + Befiwtfinc/))) —V x (77 (jO _’_je*i&)t*“w))) ) (18)

Now keeping terms of first order in e=*!=n¢,
(—iw)B = V x <v0 X B) 4V x (v x Bg) - V x (nj) (19)
:Vx(OxBo)fo(nj)fB(V'vo). (20)

which is the fourth equation in the set. Not the same as Eq. 48! (Check also Ref. 7 for the Lagrangian form.) We
also note that if n = 0, the ideal assumption, then

(—iw + V -vo)B = V x (v x By) (21)
=V x (((—iw)€L +vo - VEL) x Bo) , (22)

or,



B =V x ({1 x Bo) (23)
=& (MBg) -Bo(V-£1) (24)
=-Bo(V-&.). (25)

Note that B is often denoted as Q (in Refs. 29-31, for example).
Additionally, Eq. 16 can be used to find an expression for E:

E=1nj—vxBg—voxB (26)
=nj — (—iw€1 +vo - VEL) x Bo — vo x (—Bo (V- £1)) (27)
=nj+iwEL x Bg—vo- V&L x Bg+vo xBg (V- £1) (28)
—iwE, x By — V& (29)

We have taken perpendicular current to be zero, and parallel current to be due to the gradient of a perturbed potential.

Such a potential can arise from a perturbation of quasineutrality in the parallel direction. (Note, look at Ref. 32 in

the appendix).
The perturbed density is found through conservation of mass:

a

3': F V- (pv) =0 (30)

(7iw)ﬁ€7iwt7in¢ — _ (PO + ﬁefiwtfinzi)) Vv - (VO + Oefiwtfind)) o (VO + Vefiwtfinqﬁ) vV - (PO + ﬁefiwtfind))
(31)
(—iw+V -vg)p=-—voV:-p—pV-v—3VV - pg (32)
(—iw+ V -vo+vo-V)p=—poV -V =¥ -Vpy. (33)

This is the fifth equation in the set. We can also continue further, by substituting for v from Eq. 4:

p=—poV- €L — (&L V)po. (34)

The well known problem of closure of the set of equations requires us to make specification for the equilibrium and
perturbed pressures. We will consider a pressure tensor with components in the directions parallel and perpendicular
to the magnetic field,

P = p bb +p (i - BB) : (35)

where T is the identity tensor. One must now be careful in linearizing the above equation, remembering that b=B /B
can also be perturbed?. Therefore,

P =pbb+p. (i — BB) +(py —pL)B? (BB + BB) : (36)

At this point the problem naturally separates into fluid and kinetic approaches. In the fluid approach the perturbed
pressures are given in terms of macroscopic quantities. In the kinetic approach, p; and pj are defined by using the

perturbed distribution function f . There are two common fluid approximations. The first is to assume the equilibrium
pressure and the perturbed pressure are isotropic so, V - P = Vp. Then the adiabatic equation is used to find p in a
method outlined below. In the second common fluid approach, two adiabatic equations are used to find the two CGL
perturbed pressures, p, and p. This method is outlined in appendix M.

In the kinetic approach??3273% one can separate the perturbed pressure components into fluid and kinetic parts,
= ﬁlfr + ﬁﬁ( and p, = ]5{ + ﬁf . This way, taking the divergence of the perturbed pressure tensor from Eq. 36, we

finally have



V=V ((of ) 56) + 7 ((PL+7) (1-58)) + V- [0 —p)5? (BB +BE)]. ()

which is the sixth equation in the set.
Finally, let us make an assumption, for the moment, that the perturbed fluid pressure is isotropic, so that ﬁf =
ﬁf = p, which will now be given by the adiabatic equation. The adiabatic equation conserves entropy density, pp~"

(with ; as the ratio of specific heats)3336:37 Note that using v; = 0 conserves pressure, and y; = 1 conserves
temperature (isothermal).

d, .
i (PP %) =0 (38)
d dp=i
p’”dsz +p pdt =0 (39)
9p i =100
B TV Ve =p07p 5 (40)

)

(_iw)ﬁefiwtfimﬁ + (VO + Oe*iwtfintﬁ) A v/ (pO +ﬁ67iwt7in¢) = (pO +ﬁ67iwt7in¢) % (V p (VO + ve iwt—ing

(miw+ve-V)p=—(v-V)py —vjpoV - v—,pV - vo.

which is the final equation in the self-consistent set. The full set of equations will now be relisted for convenience,
but first as we did for the density, we can take one step further and eliminate v: fix this:

(—iw —+ vo - V)ﬁ = —(—iw +Vvo - V)EL -Vpo — YjPo (V : (—iUJ) + vo - V)EJ_) , (43)

Look in Ref. [38].

p=—&1L Vpo—pV-&L. (44)

Equations 7, 13, 14, 20, 33, 37, and 42 form a full set of seven self-consistent equations for the perturbed quantities
£1,V,], B, p, p and the ultimate goal, w. The quantities pg, jo, Bo, Vo, po, and 1 must be specified as measured
input quantities, while specification of the perturbed kinetic pressures, ﬁﬁ{ and p¥ forms the crux of the problem.
They will be found from moments of the perturbed distribution function using the kinetic approach, as discussed in
the next section. The set of equations is:

(v +i(nwy —w;))€L =V —vo - VEL (45)
po(v + i(nwy — w;))v=Jo x B+jxBo =V P —pg(vo - VV+V:Vvg)—pvg-Vvo (46)
i= %V x B (47)

(v + i(nwg — w,))B = V x (¥ x Bg) — V x (nj) “B(V - vo) (48)
(7 + i(nws —wn))p = — (¥ V) po — po¥ - ¥ (49)
VP =Vi+ V- [p5T+ (G — 55)bb| + V- [(p) —p.) B2 (BB + BB)] (50)

(v +i(nwy —we))p = — (V- V) po. (51)

If the following assumptions are made: zero resistivity (the ideal assumption n = 0), isotropic equilibrium pressure
(p) —pL = 0), and vg - Vv = 0 (which eliminates the necessity for an equation for 5)'?, and we substitute Eqs. 5

and 6 for vg and use vg - Vv = v X (VO/R X R) in Eq. 46, then the result is the set of equations used in the MARS-K
code!?13:39:40 t0 self-consistently solve for the stability of the RWM:



(v +i(nws —w,))ér =¥ — (€1 - V) R*Vé (52)
po(y + i(nwy — w.))¥ =jo x B+j x Bo— V- B — py (mjz X V4 (V- mj)ﬁw}) (53)
j= VB (54)

(7 + i(nwg — w,))B = V x (¥ x Bg) — (B : VQj) RV (55)
VB =Y+ V- [T+ (5 — 55 )bb] (56)

(v +i(nwy — wp))p = — (V- V) po. (57)

Note that this set of equations makes no specific reference to the wall surrounding the plasma. The dependence of
the RWM displacement, &€ , on the geometry of the device arises self-consistently from the specification of jo and Byg.

IIl. THE ENERGY PRINCIPLE

A different approach is to change the force balance equation into an equation in terms of changes of kinetic and
potential energies (W), and then to write a dispersion relation for the complex mode frequency w in terms of these §W
terms®4*!. This approach has been called an “energy principle”” - the principle being that if any small displacement,
&1, from the equilibrium can be found that causes the potential energy to decrease, the kinetic energy to increase
and the displacement to grow exponentially in time, then that equilibrium is unstable. Specifically applicable to the
RWM is the so-called “low-frequency” energy principle??:33:34:41,42 " wwhich requires the inclusion of the particle drift
frequencies, as these can not be considered to be much lower than the mode frequency.

We start by rewriting Eq. 46 in a convenient form:

—i(w—nw¢)p0\7—|—p0(v0~V)\~I+p0\7~VV0:jgxB—i—ijO—V-]fD—ﬁvO-Vvo, (58)

and then substituting for v from Eq. 4 and for vg - V from Eq. 6 in the left hand side:

—(w— nw¢)2 po&1L — po (nwg) (w —nwg) €1 + po (—1) (w —nwg) &L - Vve = —po€1 (w — nwe) (w+1iVve), (59)

so that we have (Missing something here):

—po€1 (W —nwg) (W —nwy — wej) = jo X B+jxBg =V -P— pvg - Vvo. (60)

Now to convert the force balance to an energy balance, we multiply both sides of Eq. 60 by &% /2 (where &% is the
complex conjugate of £ ), integrate with respect to volume, and sum over all species j:

1 2 1 « [ odm L3 X
§Z/po(w—nw¢)(w—nw¢—w*j)|§J_| dV:—§Z/£J_-[Jg><B—|—_]><B0—V-IP’J~—pv0-Vv0}dV. (61)
j J

(There is an imaginary part of the inertial term, as it is written here.) This equation can be written 61 = —0W,
where the left hand side is the kinetic energy, also known as the inertial term, and the right hand side is the negative
of the change in the potential energy. Alternatively we can write £ = §I + 0W = 0, where L is the MHD Lagrangian
(a function summarizing the dynamics of the system)3°.

First, let us consider the kinetic energy integral, which we will henceforth call the inertial term to avoid confusion
with the portion of the potential energy term, W, arising from kinetic effects.

oI = %Z/PO(V +i(nwg — we))( + i(nwy — wr) +iw.;) [€1 7 AV (62)

Note that 67 is often simplified to 61 = w2K;;, where



1
K= ; / pol€L[2dV, (63)

is an MHD kinetic energy normalization term. This simplification is only truly valid for high frequency modes, when
lwr| > |wel, |wsj|, however.

Now we will consider §W. Using Eqs. 14 for j and 25 for B, we have

5w:§/£1- [joxwX(sLxBo)H1Vx(Vx<ﬁwBo>>xBo] av
Ho

_;Zj:/gi.[ﬁvo.vv()]dv_;zj:/gj_~[V-]f”]dv. (64)

The pressure term can now be evaluated with either an assumption of fluid or kinetic pressure.

A. The Isotropic Fluid Approach to W

With the isotropic fluid assumption, V - P = Vp, and Eq. 44 can be written:

VP =V (—ypoV - €L — €L Vo). (65)

Then, using Eq. 65 in Eq. 64, §W is written

SW = SWg + dWe + Wy (66)

:;/ng_.[jox(Vx(ﬁJ_xBo))—i—:OVx(Vx(£J_xBO))><B0+V(7jpov.£J__§J_.Vp0) AV

1 1 1
—§/F£j_-[ﬁv0-Vv0]dV+§/V£j_~ |:MOV>< (V x (€1 x Bo)) x Bo| dV, (67)

where F' denotes the fluid, V' the vacuum, C is for the centrifugal force, and we have made use of j = 0, p = 0 and
p = 0 in the vacuum region.

The above equation is solved by various numerical codes. For example, the PEST code*? solves for the fluid 6Wp,
in the form of Eq. (17) of Ref. [30], and uses the VACUUM code** to solve for §Wy . It can also be written in various
ways. It is useful to separate out the fluid and vacuum components as we have done (and for example in Eq. (6.4.7)
in Ref. [45]), or to separate the various modes of instability, for example Eq. (39) in Ref. [37], Eq. (8) in Ref. [33],
Eq. (58) in Ref. [29], or Eq. (1.18) in Ref. [46]. Then the various terms of the potential energy can be seen to be
contributing to stabilizing shear Alfvén waves, compressional Alfvén waves, and sound waves, and the two terms that
can drive instability by pressure driven modes or current driven modes.

One such useful solution is to use

jox B+]xBg :i |-V (BB)) +B- v (Bjb+bB)) + V- (BB +B.B)|. (68)

This form will be used in Sec. VI for the fluid term.

We will now turn our attention first briefly to the centrifugal term, which is typically not calculated by codes such
as PEST. Then in the next subsection we will relax the assumption of an isotropic equilibrium and perturbed pressure
tensor, and use the kinetic approach to find both the kinetic contribution to §W and the anisotropic corrections to
the fluid term as well.



B. Centrifugal Force

Toroidal plasma rotation affects the plasma in various ways. First, equilibrium pressure profiles are shifted*”, and
B, is effectively enhanced ? . These effects are important for the stability of the internal kink*8, as the greatest shift
and enhancement occurs near the axis, where the rotation is high. Also, however, a centrifugal force arises from the
pvo - Vvg term of Eq. 13. Since it always pushes outward, it is a destabilizing effect. If we consider the expression
for 0W¢ in Eq. 67, and substitute for p with Eq. 34 and for vg with Eq. 5, then we find:

§We = %Z/éi : [V (pofL) R*u, V-V (R?ijéﬂ av. (69)
J

This term is a fluid term, and is always real, but it is not calculated by a code such as PEST, for example, since PEST
does not include plasma toroidal rotation.

Note that the contribution to the centrifugal force from energetic particles may be as important, or more important,
than that of thermal particles®”. Compare w?p; to w?, pa.

C. The Kinetic Approach to W

By using the kinetic approach and allowing for anisotropic pressure (Eq. 50), we will show that the Lagrangian is
changed to:

0+ Wp +dWe + Wy + Wy + We + Wk =0, (70)

where we have separated the kinetic term Wy from all the other fluid terms. It will be shown that all of the fluid
terms are strictly real, while §Wx is complex. Here 6Wg is an electrostatic term and W4 is an additional fluid term
due to anisotropy of the plasma pressure. Part of it is due to a perturbation of the direction of the magnetic field in
an anisotropic equilibrium pressure plasma??, resulting from the last term of Eq. 50. This part is explicitly dependent
on anisotropy due to the p| —p1 dependence. There is also another piece to this term that is more subtle, which will
be fleshed out in the following. Considering the fluid, anisotropic, electrostatic, and kinetic parts together then,

1 - -~ -
6WF+6WA+6W¢,+6WK:§/Ei-(joxB+ij0—V~P)dV. (71)
P

The total perturbed pressure tensor can be written:

]@:ij/vv(fj—kgg§¢~VB+?;f§J_-V<I’>d3V. (72)
J

We will turn our attention to the perturbed distribution function in Sec. V. With an expression for f] in hand,
we will return to this point (Eq. 71) to complete the formulation of §Wr and éW4 in Sec. VI and 6Wg and Wi
in Sec. VII. First, however, in the next section we will discuss dispersion relations for the RWM, using Eq. 70 as a
starting point.

IV. DISPERSION RELATION AND STABILITY CONDITIONS

We wish to solve for the complex mode frequency of the RWM in terms of the 61 and W terms outlined in the
previous section through a dispersion relation. In particular we are interested in the kinetic effects which appear in
the §Wg term. In this section we will derive the dispersion relation and discuss the impact of the various dW terms
on the mode’s stability. We will then proceed to the derivation of dWy in the rest of the paper.

When a resistive wall is placed in the vacuum region, Wy takes the form:

Wy = Wy + OWY + Wy, (73)
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where ¢ indicates the inner vacuum region between the plasma and the wall, w indicates the wall itself, and o indicates
the outer region (from the wall to oo). A lengthly calculation® can be used to recast this expression in terms of SW{
and 0W$°, which are the change in potential energies due to the mode in the vacuum region when a wall is placed at
location b, or if there is no wall (wall at co). The §Wy term takes the form®*11:28:49;

SWE(—iw) Ty + SWR

oWy = (—iw) T + 1

; (74)

where 7, is related to the current decay time in the resistive wall, and is given by a specific formula (see appendix B).
Sometimes this factor is written 7, to distinguish it from the true wall time, 7,,, but we will drop the asterisk here
for convenience. Note that as b — oo the 7, terms disappear. Equation 74 changes the Lagrangian from Eq. 70 to:

SWE (—iw) Ty + OWEP

I
6+ Wp + Wik + (Cio)Tw + 1

—0. (75)

Here, for convenience, we have subsumed éW¢, 6W 4, and §Wg into dWg.

Let us now also define 6Wo, = 0Wp 4+ WP, the sum of the plasma fluid and vacuum perturbed potential energies
when the wall is placed at infinity (the no-wall condition), and §W, = dWg + WY, the sum of the plasma fluid
and vacuum 0W's when the wall is placed at a specific location b. These two contributions to the energy principle
have been theoretically developed for years?®, and computer codes have been written to solve for them, such as
PEST*? and DCON®®. Note that setting 7, = 0 leads to the internal kink mode dispersion relation?®, starting from
0I + Wk 4+ 6Wo = 0.

The above expression is valid in the range where 6W;, > 0, that is where 8 < By, the “with-wall” or “ideal” limit.
Also, in order for the problem to be considered ideal, not resistive, the wall time should be less than the ideal-wall
tearing mode growth time (see appendix C).

Now, if we solve for —iw = v — iw,, the dispersion relation is

Weo + Wk + 61

W, + 0W + 01 (76)

(v — iwr )T =

We have already seen that the W and d1 terms also include v and w, in their formulations, so the above expression
is non-linear. In fact, in general, there are three possible roots of the RWM from this dispersion relation®12:16:51,
Further discussion of the multiple roots of the RWM can be found in appendix D. Putting that complication aside for
the moment, we can simplify the above expression one step further by neglecting plasma inertia, which sets 61 — 0.
Usually this approximation is not made for the internal kink mode, but it is often made for the RWM.

(Can this be justified by looking at a comparison of the §I and W terms?)

ol we€h VvV wy  a

- R — ~ ~—. 7
Wg 023 -k vk R (77)
With large aspect ratio, then, the dispersion relation can be written®10:12:
‘ Weo + Wi
— W )Ty = — . 78
(7 — dwr)T 5T, 1 W (78)

Finally, if the complex kinetic term, W, is also neglected, the result is the fluid growth rate for resistive wall modes
neglecting plasma inertia and kinetic effects, which is written®: yp7, = —dW, /dW,.

The change in potential energy due to kinetic effects, Wy, in general has both real and imaginary parts, while §1
is real. The real part of w is the mode rotation frequency, and is given by:

Im(§Wi ) (6Wy — 6Wac)
(6Wy + Re(6Wx ) + 01)2 + (Im(0Wx))2’

(79)

WrTy =

and solving for the imaginary part, we find the normalized growth rate:
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SWoas Wy + (Im(SWi))? + (Re(6Wic) + 81)(6Woo + Wy + Re(SWi) + 61)
(OW, + Re(0Wx ) + 01)2 + (Im(0Wx))?

: (80)

YTw = —

Since the denominator is always positive, a condition for stability is that the numerator is positive (therefore the
growth rate is negative). The first term of the numerator is the fluid (MHD) instability drive. It is negative and
therefore destabilizing when 8., < 8 < fp (the “wall-stabilized” regime of 8) and it is positive when 8 < 8,,. The
second term shows that the imaginary part of §W is always stabilizing. The third term is stabilizing or destabilizing
depending on the sign and the relative magnitudes of the real part of §Wx + 61, 0W,, and 6Wj,.

Another way of writing the stability condition is'®

(Re (6Wi) + 61 — a)® + (Im (0Wk))* = 72, (81)
where
= L w4 owe) + L (ow, — sy 1w (82)
a = 9 b [ 2 b oo 1_’_77_71)7
and
~Low, —ewy —1 (83)
T T e T

It is easy to see that on a plot of Im(dWk) vs. Re(6Wi) + 81, contours of constant y7,, form circles with offset a
and radius r.

Therefore, for a given 6W,, and 6Wj,, the plasma is stable if Re(6Wix) + dI and Im(dWk) lie outside of a circle
centered at (—3(6W; + 0W), 0) with radius £ (6W;, — 6W). Once the values of §Ws, and §W, are known, it can be
predicted what values of Im(dWx ) and Re(6Wx )+ 01 will be necessary to provide stabilization. If Re(6Wg) + 61 >
—2(6W, + 6W.) , which is usually the case, then increasing Re(§Wg) + 6 will decrease the growth rate. Wait,
positive 41 is stabilizing? Not intuitive - is it right? Increasing |[Im(6W )| always decreases the growth rate.

Therefore determining the stability of a plasma equilibrium to resistive wall modes involves the calculation of 6W,
OWy, Wk, and 01, if it is not neglected. Let us now turn our attention to the solution for the dW, which we
have already formulated up to the point of dependence on IP, and therefore, in turn, on f;. First we will derive an
expression for f] in terms of a general f;, then use it in the various 6W terms, and then finally consider some specific
distributions f;.

V. PERTURBED DISTRIBUTION FUNCTION

To find an expression for the perturbed distribution function, f]‘, for particles j, we start with the drift kinetic
equation,

F

df:
aj;

dt V.fi = C(f), (84)

J

where F is the perturbed force, and C/( fj) is the collision operator. There are several possibilities of increasing
complexity that can be used for the collisionality?’. These are discussed in appendix G. For now we will consider the
collisionless drift kinetic (Vlasov) equation:

L

m;

df; _
dt

vaja (85)

with collisionality to be added later in an ad-hoc manner (in appendix H). Using the method of characteristics on
the above equation,
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F

m;

p-fosf

If f; = f;(e, Py, 1), in general, where the particle total energy € = mjvg/2+Zj e®, the toroidal canonical momentum
Py =m;Rvs + Z;e¥, and the particle magnetic moment y = m;v? /(2B), then

V. fdt'. (86)

[ e (h B [0 g )
ﬂ‘*i/ ‘i(E+VX Fvif Aaé ¢ &Z}t (57

t .
= 7/7 Zje (]:3+v xB) - [vaajg +e¢R681§ + VE?’Z} dt’ (88)
t - 0f; g 3f] -\ . O0f; - ~ 10f;] .,
(89)

The first term above includes de = Zje ffw]:] - vdt', which is the change in energy of a particle moving across

time-varying fields and is also associated with kinetic compressibility®2. Let us now examine the second to last term
separately:

R(va) é¢g£b—R ~(]§xé¢)g]% (90)
~ Rv (; (v x E) x é¢) 8]{; (91)
_ %v- (- (RE,) + e, v (RE)) 31];; (92)
(he(om)-28) 2

Here we have used the general perturbed forms B = Bg 4+ Be~@t=1¢ and E = Eq + Ee~ !¢ g0 that /0t — —iw
and V — —in. Now returning to Eq. 89:

. ¢ [ /= of; n of; 1 of; 1 . - - - - 10f;] ..,
(94)
o T qan wany 1ag (4(RB)) S\ 1Of]
——[ije (EV) <a€—w%> —Eaip(b T +(E+VXB) VLEai dt (95)
_ ., (9fi _ndfj /t % . Ziedf; _ 1 fJ/ 2 5 /
_ Zje<ag sor) | B+ 8P¢RE Zieps (E—i—va) vidt. (96)

This is the same as Eq. (17) of Ref. [32], with the addition of the df;/u term. Let us now look at the E - v term,
using E from Eq. 29.



Returning to Eq. 96,

13

_/too (iw (€, xBo) v~ V@ -v) d’ (97)
_/too( iw(vxBo) £, —v-v&’)dt’ (98)
=/_;< iw (v x Bo + Eg + V@) - £ | (f—f))dt’ (99)
:/; <—z’w(E0+va0)-£L—iw£l-V<I>0—f—iw‘i) dr’ (100)
_/;< iw ;”;Z; ‘ffiw(é+g.vq>o)>dt' (101)
/too <nge< (dt/&) Vd;;) C(ll‘tijw <q>+él V¢0)> dt' (102)
- —iw%(v €)— <1>+zw/; (ZJeV ddi,l - (qhgl-vqm)) dt’ (103)

. of of; Zie - ¢ ¢, Zje (=
szmj(w(,gnaéb)[ €+ zwqu)/oo<v.dt’ fm—<¢'+£L V@o)) ]

J

+@% (REfﬁ)*@%[ (f]+vx]§)~vldt’. (104)

w 6P¢

B ou

Using E¢ —E- &4, with E from Eq. 29, and defining

we have

+

. K d Zie [~
sj:/ <v~ dif —m—e(qurgl V<I>0>> (105)
—00 J
i ime (W20 00N (e s _Z.ieafj/t 5 B) v, dt’
fj =im; (w 9 3P¢ (v &, —355) B on ) (E+VXB) vdt
%_ﬁ Ofi \ & . Zi¢ 91 : va) -
(ZJ - eon ) 23 3P¢R<ZW£J—XB vé) -8, (106)

Here 3; is the integral along the unperturbed orbits. Now, let’s look at the second line above. Rewritten, its

‘ af] afy .  R_- .
e ®—Zje oP, <I> R(&L xB) &4+ Vg (107)
9fj & of; .
= Zjeﬁigjq) + Z 8]3] R(fJ_ . B) X €¢ (108)
_ 7 afj =~ 6f] )
= Zje—(95 @ ap, (€L -V Zjel), (109)

since RBy4 x &3 = VW¥. Returning to Eq. 106, we have

+Zj6

fjiml(wﬁfj 6f]>(v~§l§j)zjeafj/t <E+VX]§)~VLdt/

Oe (9P¢

af; = Of;
6—;{) - a—be (EL -V ZjeV), (110)

B ou
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which is the same as Eq. (25) of Ref. [63]. Simplifying the second line above further, we see that it is

g 0

=Zje e @(5# -V(P¢—ijU¢)) (111)
0 0
= Zje a{,—] fj (& Py) + f] (& Vm;Rvg) (112)
=-£, -Vfi+Ze afj P+ gj;; (&L - VmjRuy). (113)
Returning to Eq. 106:
= 0 0 0 0
fr=teVhwim (05 —nfl ) oves 5 - e + 2508 4 B e vy (1)

Following Ref. [54], we have defined:

_Zje ! - S /
M(gL)_mj/_oo(EJrva)-det (115)
:1/t iw(ﬁLxB)-vJ_—&—((vl—&—v)xB)-VL}dt’ (116)
B H
:B/ —iw (€1 - VJ_)XBJF(VJ_XVJ_) B-l—(VHXVJ_)-B}dt/ (117)
:/ —iwé) v +—QE B+—”— B dt’ (118)
e YT BB B B ’
t , ~
:/ {—z’w&_-vj_—&-z)f_ﬁ”—i—l/lgj'~B} dt’ (119)
__ pB v 5
= —iw&, - VJ_+(ij+ 5 ) B, (120)
so that
: f; of;
fi=—¢€.-Vfi+Ze 81@+3PJ (€1 - Vm;Ruy)
i (0205 00 gy B VLY g
+im; (waE naqu (v & —35j) B o) —iw€y vy + ij+ B B). (121)

Note that B is given by Eq. 25, and in the middle term of M(£1), (u/m;)B - B/B = (u/mj)léﬂ, where we have
introduced f’:”. We will now spend a moment to derive an expression for BH which will become useful later.

B =B-B/B (122)
=b - (V x (¢1 x B)) (123)
=b- (6L (V-B)-B(V-£1)) (124)
b (-BV-£, + £, V-B+B V£, — £, - VB) (125)
:—BV~£L+B~V<§/B()—£l-(B-VB)—B-£L-VB (126)
:*B<V'€J_+€J_'(B'Vf)))ff)'SJ_-VB (127)
=—B(V-é1L+kK-£1)—b-£,- VB, (128)

where we have defined the magnetic curvature k = b - Vb. For the last term we can now use
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6~£J_~VB:€L-V(B~B>7B-(SL'VB), (129)
or,
2B-£, -VB=¢, -V (B-B). (130)
Returning to Eq. 128,
~ B2
B|B<V’£L+H‘£L+ =361 V<2>>, (131)

Finally, using the equilibrium relation?® (see appendix E, Eq. E5)

2
A\ (uom + B;) =k (B*+ o (pL—py))), (132)
we have
B, :—B<V-g+zn-g+n-g (W) —sL-V(“;’?)) (133)

Now we can use a definition of an anisotropy parameter??:55-57

Ho\PL —P
c=1+ ( i H)’ (134)
to write the alternative form:
B Hop 1L
B”:—B(V&_—&-(l-l-a)n&_—&_V(EQ ))a (135)
which is the final form of B”
So now writing fJ in terms of B”
7 af; of;
[i=—€-Vi+Zeto+ apj (€1 - Vm;Rug)
. 8f (9f . m; 8f 3 M = UH ~
+im; (wﬁa]_n&P;) (v &, —sj)—fja—lj —zwﬁJ_-vJ_—km—jBH +pvi-B). (136)
(What happened to the Vm;Rv, term?)
Af; of; 9f; . mof; [ (L= =
fi=—¢&. - VfJ+Zeaj<I’+z ; wa—g—na—Pjﬁ (V-Q_—sj)—?ja—lj —zw&_-vL—&-ﬁjBH—FEvL-B
(137)

The quantity L; (1) in Ref. [54] contains the finite Larmor radius terms that we have neglected in Eq. 137.
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VI. SOLUTION FOR 6Wr AND 6W4

Returning now to the derivation of Sec. III, we start with Eq. 72 for P:
P — . ”_ fJ fa
=> m; [ v (fi+ Spél VB4 26, -V (138)
J

and Eq. 137 for fj

P _ 0fi g Wi 0 ey Mgy B
fi=—¢&, VfJ+Ze ‘I>+z W n8P¢ (v &, —355) B 0y tw€ ) VL—&—ij”—FBvl B].
(139)
Now, expanding vv:
~ PN ~ ~ 1 ~ A~
— ij/ (vﬁbb oy (Bve +vib) + 502 (T- bb))
J
_ , oo (01 00 LOfN o ( 0f  OFi Y .
[gl Viitv-Luim, (“ag "op, “Boy) T \¥ae "op, )V
of; m;) af] f]
e (B(BH—SL VB))— B oY LBt Ze (@4 Vo) S (140)
From Eq. 128,
Bi+&. - VB=-B(V & +r-£1), (141)
and we will also now define
Z=Ze (fi>+£L~V<I>0). (142)

Then

) 1, e o or o .

:zj:mj/<vfbb+2vi (I—bb)) [—EL.ijHmj (”a{,—]_”a?) Vet ikt n J/:J a%-] p
b b ofi  0fi , 19f;

- ij /UH (BVJ_ + VJ_B) (VJ_ f’)) (még| %ﬁ) d3v, (143)
J

where all other terms gyro-average to zero. (Is that correct?) Let us now separate the perturbed pressure tensor into
a fluid and anisotropy term and a kinetic and electrostatic term.

]P’F+A—ij/<ulbb+;vf_ (i—f)f))) |:_€J_‘ij+(V'£J_+H'£J_) 6fj]

) ) of; 0 9
+ij/ (be. +€.5) <Ulivi) im; (‘” a{f B 81{; rog c’jjj)

J

- Zm]/ (BBJ_ + BJ_E)) (vévi) <mBj;)| %ﬁ) dv, (144)

J
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and

Brero=Yom, / (Uﬁsmévi (1_55)) [ ( o _ng]{d)) +z%fﬂ] v. (145)

First, in this section, we will continue with the fluid and anisotropy contributions to §W, and then in the next section
we will return to the kinetic and electrostatic parts. Continuing with the fluid term,

2 bb 0
Prya=bb [;mj/”fﬁl -V fd* v+ (V- €L +H‘£L);mj/ ﬁm;;% 8{3 ddv]
i_bh 1 1 o
+ (I—bb) [_zj:mj/2vi£l.ijd3v+(v'£J‘+n'£J‘)Zj:mj/2Ui’nl2jgl afdeV]
i » of; of; 1 0
v ed) S (1) (o 00 ) 4]
_ (BBL +]§LB> |:Z m; / (’U|2 L) (Tg; g{j) d V] . (146)
Let us now define
ij /11”; ing gfj d*v, (147)
Zma/* %[de (148)
and
0 of; 10
I _ij/(UIQUL) 1M (w 8{:] —na}% +wB 8{3) V. (149)
Then

Bria=bb [, Vpy + (V€L +r-€1) 0]+ (T-Bb) (-6, - VoL +(V €L+ -€1) Lo
-‘r(BSL—I—éLB) H”l—%(f)BL—FELB) 1. (150)

Evaluating I is straightforward,

1 O,
J
_ ) } 4 My of; 3y
_Zj:m]/4ul 5 (mﬂu) v (152)
=— ’B fjd3 153
==>_m; [ 5viBo3 (153)
J

__pe (154)



Similarly, for I
1
11: E mj/vﬁ2 i(n;]aafjdgv
o m,; 2B\ 3f;j
= d’v
Z:mj/rUHQUl B (mjvl) 0B

= —Zma/”uBafjdg
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(155)

(156)

(157)

(158)

(159)

(160)

(161)

(162)

(163)

(164)

d
BB 0B’
However, I; can also be evaluated in a different way, leading to a more useful result. To do that we replace df;/0u
using:
of; _ 0f; Oe n af; 8/L
81}L Oe BUL o Ov%
9f; _ 90§ 9 01 0
81} Oe 81} ou vﬁ'
Then
0fj _ 0vi (0f; _0f; Ye
o O ot 9z vt
_od (0f;  0f; %) 0.
- op \ 02 81}2 e Ov?
_2B (9 %lﬁ
ot av 2
9 _ o
o? 5)1) ’
so that

I = Zm]/vﬁ;vin;] %f]d3v
J
= ij/vuvL (gf; — gg%) d3v
J
:2mej/vﬁ/ (vigg_devL) dv) fZWij/vi/ (vzlgvf%dvo vidvy
J j
:27erj/vﬁ/ (;vi) /dfjdvu —QWij/Ui/ (;m) /dfjm_dw_
J J
:2w2mj/vﬁ/ (/vghu) fjdvn —27Tij/vi/(;/v”dv|> fividvy
J J

. 1
:ij/fjvﬁd‘svamj/fjivifv
J J

=PL =P

(165)

(166)

(167)

(168)

(169)

(170)

(171)
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(Somehow I get the wrong sign between the last two lines above) where we have used

/dSVZQﬂ'//’UJ_d’UJ_d’U”. (172)

Note also, from Eq. 158, that

apH
_ = B 1
Pl —PL 9B ( 73)

Returning now to Eq. 150, and dropping the I, term (Why?), it can be written

Prya=bb[—¢, - Vp —(V-€L+k-€1) (p)—p1)] + (i—BB) |:_€L “Vpi — (V€L +H'EJ_)B%

+ 5 (BB +BuB) (o~ ). (174)

Finally, the above expression represents a form of the perturbed pressure tensor that we can use to evaluate SWg+06W 4,
from Eq. 71:

1 - - -
6WF+6WA:§/EI-(joxB+j><B0—V-]P’F+A>dV. (175)

Using also Eq. 68 for jo x B +j X Bo,

v o=} [ { L (v (m) vmew (B m)] o (1 00 (v (8,4 5.m))

% Ho B2
~V -bb[~£, - Vp = (V€L +r-€1) (p) —p1)]
V. (i—BB) (—gLVpL —(V'SL—i—n-gL)B%)}dV (176)

Using the anisotropy correction factor ¢ from Eq. 134 and with

v (bb) =bV)+k+b(V-b), (177)

v. i—BB):VL—n—B(V~B), (178)

we have
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SWp + 6W, :% /51 : {:0 |-V (BB)) +B- v (Bb+bB))| + ia (v-(BB. +B.B))

+bV) (—€, Y — (V€L +K-€1) (o) —p1)) — V ( €L VpL—(V-&utn @B%%)

_(,.HB(V.B)) <_5L.vp,_(v.gL+,§.§L><pl_pL_ %B)JFQ vpL>}dV (179)

1

- / {—51‘1 v (BBH/uo) +2 (BBH/uo) (k-€)+o0t - V- (BBl +BLB) m

6BV (61 Vpy (V€ +r-60) () —p1)) €1V ( €1-Vpi—(V-éL+r- &)B(?BL)

(rogr e (Vb)) (6 Vo - (Vobs troe) (p—po - BZE) e, vpu) bav
0B
(180)

:%/{(BBH/MO) (V-§i+2m-£i)+g§1.v. (BEL-FBLB) /1o
+(v.£i)< €, -VpL—(V-€1L+kK-€1)B %%)
+(r-£1) (ﬁ V(p—pL) +(V-€L+K-€L) (p| —pi - %’g))}dv. (181)

Now using an expression for P’H from Eq. 141:

Wi + 6Wa :% / {05’1 V. (B]?;l + BLB) i

(B o) (V€1 + 20 €1) (Vo€ + (1061 €09 (F))

+(V-€1) (€L -Vp) = (V-€) (V€L +5- SL)B%
+ (k- €1) (€L V (o1 —p1)) + (5 €1) (V- €u +1-€1) <p| —pL - BO;B>}dV (182)

:%/{a£i'v~ (BBL +B.B) /i — B /o |V €7 +2n-€1[°
+(py—pL) (V€L +26-€1) (K-£0) + (€L - Vp1) (V- €5 +26-£1)

(V- &) (€L-Vp)+(k-€7) (€L V (p) —p1))

(

+ (K- £J_+V £J_)(V'£J_+K“'£J_) (—B%pé_>+(p||—pj_> (R-&i)(V'ﬁJ_-i-K'{J_)}dV
(183)

:%/{Ugj—'v'(BBl+BiB)/MO—BQ/uo’ij_-i-Q,g.gj_’Q
+ (b1 = p2) (2|R'€¢‘2+(V'5*¢)('€'5¢)+(n-ﬁi)(v-&_)-l-\n-&_f)
+(n.£i)(€L~VpH) (V gj—_V'£i+2n'£i_”'gi)(fL'Vpl)

+|V-5L+,«,.gﬁ( %%)}dv (184)

Z%/{a£1~v-(BB¢+BLB)/MO—BQ/MOIV.51+2KJ.51’2+(K.gi) (SL'V(MH‘IM))
—(p1—p1) (81k- €1 = (V- €1) (k- €1) = (= €1) (V-€1))

+IV-EL+r-EL ( B%)}dV. (185)
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Manipulating the expression in the second line leads to

SWe+5Wa =5 [ {061V (BBL+BUB) /uo— B/uo |V €1 + 20 €1+ (5 €1) (€. ¥ (1 +11)
= (P =p1) (IH L (V€L) (k€u) + (k- €1) (V-€0) + |V~€¢\2)

(o —p1) (AR ~2(V€1) (k-61) ~2(k€1) (V- €1) — [V €2 )

+|V.§L+n-gL2(—B%>}dV (186)
1

—5 [ {o€1 -9+ (BBL+ BuB) /o + (x-€1) (€. 7 (b +12))

~B? /1o (1 _ Bl —PL) (pjgz_ p¢)> |V - &% + 2k 51’2

19)
+IV-EL+r-ELf (pL—p|—BapBL)}dV (187)

1 1 - - B2
:2/{0<M051-V.<BBL+BLB) —MIV-gi—I—Zn.gi‘?)_i_(n,gi) (él'V(pH-l-pJ_))
~B|V €L +k-€1) (3% (py +pL)>}dV7 (188)

where we have used Eq. 173 for pj —p. . Recalling the discussion from subsection IIT A, the first term can be rewritten
in a different way.

1 .
—¢ v (BBL + BLB) =7 (189)
Ho

_ |‘B-|-|2 . * 7 >
A +Jj (EJ_Xb)-BJ_ (190)

Finally, we have

B> B2 N =
OWrya :;/{U <—|;(;|—M()|V-£J_+2£J_-R|2+j (ﬁj_xb)~BL> -l-(FLEj_) (SJ_-V(p”-i-pJ_))
~B|V &L +kK-EL) (8?5’ (p) +pL)> } dv. (191)

It is now useful to split Wg, 4 into isotropic and anisotropic parts. This is easily done by defining

1
Pavg = 5 (p) +pL)- (192)

Then

1 B, > B? N -
Wr 25/ { <_|lj(;| ~ Vet 2w ) (&3 %) 'B¢> +2 (k- €1) (€L Vpavg>}dV, (193)

and

_]. |BJ_|2 B2 2 . * 7 S 2 8pavg
5WA2/{(1 a)( T Ve 26 +J||(€be)'3L 2BIV &Lt r-6u] 55 4V

(194)
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One can easily see that if the equilibrium pressure is isotropic dW4 is zero.

The fluid 6W should be self-adjoint and therefore strictly real * . In particular, the last term of §W 4 in Eq. 194 is
obviously real, as are the first two terms (the X and the X terms) of of §W4 in Eq. 194 and éWg in Eq. 193. When
the equilibrium pressure is isotropic (¢ = 1 and payvg = p), one can show that the imaginary parts of the last two
terms of W g cancel . With anisotropy that property is no longer obvious, but a lengthly calculation can be used
to show that indeed dWg + §W 4 is still self-adjoint (see appendix L).

VIl. SOLUTION FOR 6Ws AND dWxk

Let us now return to Eq. 145 for I@’K+¢>, and solve for the kinetic and electrostatic parts of 6W.

1 ~
6WK+6W¢:—§/£j_~(V-]P’K+q>>dV (195)
1 ) U N of,  0f;\ . =0f] 4
J
(196)

From Eqs. 177 and 178, we can see that

i'V-(BB) =€ K=k £, (197)
e v (T-Bb)=¢1 Vi€l k=-V-& 5 €. (198)

Now

_1 Lo (e (o) oen ) [im, (025 0265 4 590] o
5WK+5W¢2;//2va (UQV €L+<v2 2 K-&1 | [1my W nap¢ S]+Zas d°vdV.
(199)

Then we introduce the pitch angle, x = v)/v. Note that A = uBy/e doesn’t distinguish between positive and negative
parallel velocity; using x is therefore preferable in a general sense. Also using ¢ = %quﬂ + Z;e®, we have

1 , of; fi \ - - Jf;
Wk + Ws =3 zj://(s — Z;ed) ((1 — X2) V€1 + (1 — 3X2) K- £j_) [zm]— (wa“);j — n@]%) 55+ Zajg] d3*vdV.
(200)

Let’s return to §; from Eq. 105. Then

‘ -
d Z
55 :/ V- éJ/' — — |dt. (201)
— o0 dt mj
Now,

Derive this first step (look in Ref. 32, Egs. 25 and 26):

dg,
V-W—SJ_-V(VV) (202)

U2 ’02
zTJ‘V-EJ_—F <2l—v|2>n-&, (203)

where terms that gyro-average to nearly zero have been neglected3?.
Now we note that we have seen the quantity in Eq. 203 once already, in Eq. 199. Let us introduce:
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((1—><2)V~€i+(1—3x2)n-£1)+% (204)

so that

t
HT;
=] Ehla, (205)
—co My

where (-) indicates a gyro-averaged quantity. The evaluation of the integral over the unperturbed orbits is performed
in appendix H, and results in:

)= — ()

: j J_ i '
=00 1M (n(wD) +lw) — il + nwg — oJ)

(206)

The bounce, wj, magnetic precession drift, w},, and E x B, wg frequencies are defined in appendices I, J, and K. The
summation is over I, the bounce harmonic. (Make general for trapped or circulating particles.) The effective collision
frequency, v is discussed further in appendix G.

Returning now to Eq. 200,

af; af;
1 - (w— -n ) (HT;) _Of,
SWic + 6Wp = — = Z// ((HTj> - z) \"oe ORI g0 pyav, (207)
24 n{wh) + lwj —ivle + nwg —w Oe
and separating the two terms:
Somehow the sign is wrong here?
1 ~50f;
Wa =~ Z// |Z|28—=’;Jd3vdv, (208)
J
and
1 W —ngH
Wi =— = // HTj)[?—— SRk d*vdV. 209
K 2; I(HT)] n(wh) + lwl —ivle + nwg —w (209)

What happened to the cross-terms?

VIIl. RECONSTITUTION OF EQUATIONS IN TERMS OF ¢, x, AND ¥

For the purposes of the MISK code'®'®, which performs integration over e, y = v| /v, and ¥, we will now replace

the integration over d®v and dV with de, dy, and d¥. First, from Eq. 172,

/d3v = 277//dede1)”, (210)

and then using

v =4 /v? — vf =4[ — (1-x?), (211)
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de d (1 9 9 2e
v, vy (2"%‘ (v “’L)) = = [ 12X, -

/d3v - 27r// (1/32(1 —x2)> (W%) < :de> = Qm\/?//a%dxdg. (214)
/dV = ///rdrdqbd@ = 27r//rdrd0, (215)

assuming axisymmetry. Now we will replace the dr and d@ integration with integration over d¥ and d¥¢, the particle
trajectory. First, df is defined as

we find

Next,

de Bdo

dl = < = . 216
b-V8 Be-V (216)
Then with
1 R
By = — (VU x 64,), (217)
Ry
(% x &) %2
S0,

/dV = 2#//rdrd0 = 277//BR0d\Ild£. (219)

Finally, if we define

de
F= =, (220)
Ix|

(Where does 7/2 come from for trapped particles and not for circulating in Ref. [26]7) then

/dV = 2ﬁ/%d\p. (221)

Therefore a three dimensional volume integral has been reduced to one dimension in ¥ by the assumptions of ax-
isymmetry and that f; (and therefore n; and Tj) are flux functions, i.e. they are functions of ¥ and not r and 6).

Finally,
//d?’vdV:///4\/§7r2 T Ix|e? dedxd®. (222)
m]?B
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Secondly, we must replace the Py derivative in Eq. 209. Since Py = m;Rvg + ZjeV¥,

8P¢ 8’U¢,

OR
50 =27 e+mjv¢a\11 —l—ija—\I/. (223)
Then
of; _ 0f; 0P
R 224
o 0P 0¥ (224)
_Of; OR vy Of;
= 9P, <Z6+mjv¢3\p)+m R[)\II P, (225)
L, OR\ , 0f; d®
P, (Zje+mjv¢aq/) + Zje % 4T (226)

Here we have used m; R = 0P, /0vs and Zje = 0e/0P. Therefore,

of; f; 7. of; d®

_ v %4j€ae dv (227)

0Py Zje+myvy5g

If we take OR/O¥ ~ 0 (Why?) and use wg = —d®/d¥ (see Eq. K4), then

of; 1 9f; of;
oP, ~ Zeov Yo (228)

Finally, the four §W terms are:

oo 5 [ i) 52
W = 325 [ ]2 % m§3x|s%dsdxdw, (230)
W = (231)

W =, (232)

where we have defined the frequency resonance fraction, A;; as:

iy o n Of;

7 ((W —nwp) F - ﬂT{ﬁ)
Ajjp = — j - : (233)
n(wD> + lwi —ilg + nwg —w

Note that in appendix F we use the quasineutrality condition to solve for Z in terms of known quantities. We will
now turn our attention in the next section to specific distribution functions for use in Eqs. 229-232. (Correct?)
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Equations 229-232 are expressions for dWg, dWg, dWp, and dW, that have so far not assumed a specific form
of the distribution function. Once f; is specified, the derivatives 0f;/0e, 0f;/0¥, and Of;/0x are used to evaluate
the W terms. In principle one can use any form of f;, including numerical forms, so long as they provide smooth
derivatives. Here we will utilize four different analytical forms for f;: Maxwellian, bi-Maxwellian, isotropic slowing-
down, and anisotropic slowing-down. Other distributions for future consideration might include an energetic particle
distribution modified by high harmonic fast wave (HHFW) heating®® or Maxwellian electrons modified by electron
cyclotron current drive (ECCD) or electron cyclotron resonance heating (ECRH)%°.

A. Maxwellian Distribution Function

The Maxwellian distribution function,

M

i s

3
M _ mi \? .
I (e,¥) =n, (27rTj> e /i,

It is isotropic with respect to pitch angle (independent of x), so df;/9x = 0. Also,

and

Defining é = ¢/T;,

or,

where we have defined

So, then:

of; _ _h"
Oe T‘j7
Ofi _ [ Ldnj 3m;dly (e mdl; (@)3675/@
J J J

ofj _ f"( Tidn; (. 3\ dI;
ov  T; \ n; d¥ ’

of; _ 1, (. A
A TZJ@ wyyt+ | € 5 )Wt |

) MmO B (B -
(w—nwg) 9 ez, 00 T T, nlwivt (-5 |wirtwe)—w

Then from Egs. 233 and 241, for a Maxwellian,

(234)

(235)

(236)

(237)

(238)

(239)

(240)

(241)
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(i + €= Py +ur) —w

il = J 7 _ i ’ (242)
n({wp) + lw] —ivlg + nwp —w
Equation 229 can be written as:
[ n(wiN—k(é—é)wiT—kwE)—w Mo
>3 ovae [ [ [ iy T 2 LT etdedydv (243)
-2 _ n{p) 1 vty s | T mip
- n(w1N+(é—§)wiT+wE)—w 5 N:
= Z 2V/ 27 /// [(H/&)|? - - S Tj2nj< mﬂ) e ¢
il T I n(wh) + lw] —ivlg + nwp —w 2rTy me
(244)
( +(E—§)wj —|—wE)— -
*N *T 5 ~
=> Z f/// (H/&) 2 Tj—|y|&5 e 2 dédxd®. (245)
j l=—o00 wD>—|—lwb — il +nwg —w B

For the electrostatic term we return to the form of Eq. 208, for convenience, and write:

5W£4_—§/
7,1/
2

Equation 247 is the same as Eq. (3) of Ref. [10]. Alternatively, using Eq. ?7?,

‘ Z / A (246)

’ Z 7 e bav. (247)

SWM = — szfﬂ ///[Ze ‘<1>+5L V@O‘}% ;B (248)
s [ e
:_Z // <Ze> EESIN V@o‘
which is equivalent.

With an isotropic Maxwellian distribution, ¢ = 1, paye = p in 6Wr (Eq. 77), and W4 = 0.

{ / ééeédé] anj%mdxdqf (249)

n; T} Ix\dxd\ll (250)

B. Bi-Maxwellian Distribution Function

In order to be consistent with the assumption of different pressures in the parallel and perpendicular directions, one
should use a bi-Maxwellian distribution. The Maxwellian distribution is really just a special case of the more general
bi-Maxwellian, with T}, = T}1, so the bi-Maxwellian forms could be used to be more general. The bi-Maxwellian
distribution is given by:

o
—_

M (e, W, 1) =, (%) e (EB)/ Ty =BTy (251)

or, in terms of x,
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m;i\ s 1
f]l?]\/f(ga\l/aX) ="nj (J> - 1

T (3*€><2/T.1||6*6(1*><2)/TJ¢7 (252)
;.72
Jll
or:
3
FM(E, W, x) = n; (%) R S L) (253)
T T
We can see from Eq. 251 that
ofy _ SN (T (254)
Oe T \Ty )
Then 0f; /0¥ takes the form:
bM
of _ KM myny (o1 AL NdTy (0T T T (255)
ov T; n; d¥ Tj2” 2Ty ) d¥ TJ.QJ_ T; av |’
which is analogous to Eq. 237 (and, of course, reduces to Eq. 237 when T} = T}, ). Defining

; 1 dT;
7 _ JH
Wip, = Zye A’ (256)
and
; 1 dT;,
oo _ = %4y 257
w*TJ_ Zje AU ’ ( )
then
of; M : T 17T e(1 - x)T; :
= gz |w + At B 5 el KLS A I8 (258)
ov ~ 1, O\ TR T e ) T
or
af, M : (T 1N\ (T \ . T T\
R J 2( 22 ) - = ZJ ) 11—+ (=2 -1 [t ) . )
o TJ j€ |WiN + X TJ” 2 T]H w*TH + E( X ) TJJ_ TJJ_ w*TJ_ ( 59)
So that

Jll

bM _ T. 1 T, _ T,
e bl () DR -

Finally, in this case df;/dx # 0, but rather,
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of; oM 1 1
o =—f7" Q) ( 7 — 7 (261)
Ox ! Ty T
T T
- ) (7 - 7). (262)
! Ty T
Now examining the terms of 6W for the bi-Maxwellian distribution, from Eqs. 229-232, we find:
bM = M 1
swi =3 Y ovee [ [ Sl dedyay
j l=—o0 mj
e 0 ) 1) () + ) (7)) () 1)) (s
‘<HT>| Jll Jll ||. . \ i J Jll Jll
’ n(wh) + lw) — vl + nwg —w
(263)
oo 3 N
=3 2\/5772///%7% (%)2 1 e Ty =020 T T |y 123 dedydl
et o) g RE
J a2 (T 1) (LY 7 21 —~2) (T ) 1) (L) T _ (X
|(HT})| " (w*N + (EX (Tju) 2) (Tju>w*T|| + (E(l . X ,(T.u) ) (T.u) Wiy T+ (Tju)wE) (Tju)w
! n(wh) + lwj —ivlg + nwp —w
(264)
=>. > ﬁ///“ﬂ} (12 . T %|X|€%€_5X2/T 10Tt Gy dW
i 1=—co 7/ \ Ty
J a2 (TN 1\ (T, Jd a1 2 (T T; J T _ (T
\(HT-/5>|2 " (w*N + (EX < jH) 2) ( jH)W*T” + (E(l . X7) (Tn> 1) (le) Wy, + (TJH>WE) (Tjn)w
’ n(w}) + lwj —ivlg + nwp —w
(265)
3
S T7 ) 223 e () (10 (Ty Ty g2
=Y > VT n;T; T | glxlgzeT™ e XU/ Ti0) dédyd ¥
g l=—oo T T5
j 22 T T j 2 T T j T T
b+ (002 =) (7)o, + (0= )7z 1) () e, + () wr) = (25)
n(wh) + lw) — ivlg + nwg —w
(266)

One can see that when T = T; 1 = T}, this equation reduces to the form of Eq. 245 for Maxwellian particles, since

the exponential terms together become e, and the w,r terms become (& — 5 )Ws-

For the electrostatic term, from Eq. 230:
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bM
b T.
5W£M——22\/§7r2/// [(Zje)g"I)—&—&J_-V(DO‘ ] i (—J T |y|ebdedydw (267)
- T \T/) m: B
T L X /Ty =210/
:—Z\F (Z;e) ‘qwr& V%( r | Zixlet e Tt == =0 Tis ey
7 \Ty Ty, Th
(268)
3
. 2 . T2 2 00 A
:—Z\/?// <@> D+E) Vfbo‘ n;T; <£> - i|><\d><dx1:/ ¢3¢~ (Ti/Th1) g =212 (T3/T1) g
- T; Ty \1, 72 | B 0
J I3
(269)
T} :
2 T . pS T T \1"%
=— IR V<I>0’ n; T} <—j) J —Ix| {XQ (—J> +(1-x?) <—])] dxd¥
Z // ( ) TINT) \ 1y ) B T Ty
(270)
Here we have used
/ x2e” Y dy = \/%3, for a > 0. (271)
0 2a2
The dW 4 term is no longer zero, but rather, from Eq. 232
(Redo all this)
SWEM = Zz\ﬂr /// (HTy) By -1 M (2¢]x]) (11) Ix|e? dedyd® (272)
B 2| |7 Ty T wmip
B 1 P
= Z\/E/// (HT;)" | (*=1)|n, _ X /Ty gme(1=X*)/T51 < > 1|x|5%d5dxd\ll
- B T\ T? T
J I35l
(273)
1 b EMS%T’%Q*EX ITj1 ==X/ Tk dedyd B
T.,73 | \Tir Ty ) B 7
JLE5) '
(274)

J

(HT, /o) 2L (37 1)]

ol

JH

—Zf///w

B

s 1
/ e dg
0

Then we have

B
Il <X2 . 1) .
Like W4, 6W4 does not involve a frequency resonance fraction with various energy dependent terms in the same

l(H /€)
way that dWg does. Therefore we can simply perform the energy integration, using
5
v for a > 0.

(275)

(e

(276)

7 )
8az
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T

3
2

. } 1570 [ [ T
s f o (2
j S Tj.

i
IXI (x* = 1) {XQ (;}> +(1-x%) (ﬁ)} dxd¥

C. lIsotropic Slowing-down Distribution Function

If instead of thermal particles we consider the stabilizing kinetic effects of energetic particles®!, such as beam
ions'?61:62 or alpha particles'®26:63 then we must make use of a different distribution function. An isotropic slowing-
down distribution function that is a good model for alpha particles is:

3

. 2 1

(e, W) = n;A, (””) ———, 0<e<e, (277)
o €2 + &2

where e, (which takes the place of T; as a defining energy of the distribution) is the birth energy (3.52 MeV for alpha
particles), &€ = €/eq, €. = €./€q, and the critical energy between slowing down on electrons (¢ > ¢.) vs. slowing down

on ions (g < g.) 185364
3
m; Me niZi2
(ma> (nz (m>> T.. (278)

K2

Wi

()

Note that in a deuterium plasma with n; = n., e./T. = 18.65(m;/m;) so that for alpha particles é. ~ 0.01 T, [keV].
For alpha particles, then, £, < 1 for plasmas with T, < 100 keV, so £, is quite small in Eq. 277 compared to the range
of 0 < ¢ < 1. For deuterium beam ions £, ~ 0.2 T, [keV], so &, and & are comparable for plasmas with T, ~ 1 — 10
keV. Note that in a plasma with a significant fraction of tritium, one must use the full form of Eq. 278, as it can make
a difference in the calculation for alpha particles®?.

The constant A, is defined by the first moment:

1 15 1
“ 221 . 4/2r 3 4
n; :/fj”‘d?’v:/l/o \/;ng;*dgdxz/o \/;Wsééfffdé. (279)
- m?
J

Using equations 277 and 279, we find:

1 AL -1
Ay = (4\/% / 3623dé> (280)
0 &3 4 &2

which is the same as Eq. 20 in Ref. [26]. This integral is analytically solvable, and results in3%:

Ao = S%W (m (1 +é;%))_l, (281)

so that

3
3 3N\ /ms\ 2 1
(e, U :n-7<ln(1+écz)) (]> . 0<e<e.. 282
f]( ) J8\/§7T €a é%+é§ « ( )

Note that this distribution function is isotropic in pitch angle (independent of x), so that df;/0x = 0.



32

Now, performing the partial derivatives from Eq. 77, first
8 . [e3 3 AL
O; _ 13 & (283)
Oe Ea 2 (—f% + ég
And, second:
9 Ldn; | 1 dA 1 dél
fg T (L B L S (284)
Now, analogously to Eq. 241
9 of; ¢ 1 déi 1 dA. 14 3 et
Ofi _ n 0f _Ji [can dee  Ldda Ldm) 8 &2 ) (285)
Ea Zje é% +éc§ dv Aa dv u% dv 25% +éc§

©=nwp) 52~ Ze ow

From Eq. 233, the frequency resonance fraction is
3 d 1
€an 1 dég 1 dA, _ 1 dnj 3__€2 _
Zse ( 3.3 dV A, dv 7, d\I/) T2 3 (nwp —w)
o E£24E4 £24€ 286
n(wp) + lwp —ivlg + nwp —w

gl =

And, finally, substituting into Eq. 229

>y [ [ [
) et (nwp = w) ra
I (287)

oWg =
Jj l=—c0
3

can 1L _deZ 1 dA,  1dn; ) 3
Zje .3, .3 dv A, d¥ n; d¥ 2.3 .3

|<HT‘>|2 E2+EZ E2+EZ J

] : ——

n(wh) + lwj —ivlg + nwp —w €a

= 2\/§7T2///n’5aAa1|X|
2 2 TUUB T e
2 (wg —w)
: (288)

Jj l=—c0
gan L 42 1dA,  1dn 43
e\ 3, 3 dv A, d¥  n; v 278 3
(/)] —— e : e
n(wh) + lw] — ivlg + nwg —w ’
which is the result found in Ref. [26], Eq. (19). For the electrostatic term
2 fo3 g3
’ ig | (289)
€2 + &2 iB

(Z;e) ’<I>+£L v,

5W¢—22\[7r ///
%) 1

s P
2

- 2
—ZS\/Eﬂj///(Zje)2’<1>+§J_.V<I)O‘ E|x|dxd\11n] (
i @ €
7 &
) d2dxd.

Zie\? | =
Z3\/§7r2///<;> "I>+€J_-V<I>o‘ Nj€a |X|<
j «
pin 0Wp (Eq. 77), and 6W,4 = 0.

For the isotropic slowing-down distribution, o = 1, paye

(291)
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D. Anisotropic Slowing-down Distribution Function

For beam ions, a logical extension of the previous slowing-down distribution function is to add pitch angle depen-
dence. The anisotropy of the energetic particles’ distribution function may have an influence on stability!?-24:66768 = A
standard solution is a Gaussian distribution of particles in y,% so that, modifying Eq. 282, we have:

9, x) = ZZme,ps\Px) (292)
=S e () A (9) (mj !
s k P

> 1
3 ~
Es,k 2k +é ( ) 5Xs,k7p(gs,k7 \IJ)

« [e—(x—xO o (O)?/0xZ e p (o ®) | o= (XF24X0 5,0 (9))?/0XE 1o p (B ks ®) 4 o= (X—24X0 0,5 (9))?/0X3 . p (E5 k)
0<é&r <1, -1<x<L (293)

We have made the above expression general by making it a sum of many different particle types. We will allow there
to be s number of sources, k number of energy components, and p surfaces of deposition, so that the total energetic
particle distribution is fully described by the linear superposition of s x k X p separate distributions of the above form.
Here €, , is the maximum beam energy for source s and energy component k. So, if the source s = A is set to 90 keV,
for example, then one might notate the full energy component maximum energy as €, = €4 s = 90 keV, while the
half energy component maximum energy for source B set to 70 keV would be: ep haf = 35 keV. In addition, each
beam source can deposit on a particular ¥ surface more than once, for example p = out when it enters the surface
on the outboard side, and then p = in when it exits on the inboard side.

The additional two exponential terms are included here in order to satisfy the boundary conditions of no diffusive
flux® at x = —1 or 1. Here, however, we do not require any conditions on the trapped/circulating boundaries, or
symmetry about x = 0.

The general form above gives each surface of deposition a central pitch angle xo s, and width éxs ;. The center
of the Gaussian is determined geometrically, by the intersection of the beam line with the magnetic field lines of the
particular surfaces, and is therefore, ostensibly, a known quantity. Note that for the general case of non-perpendicular
injection, x5, # 0 and the distribution is not symmetric and therefore the recasting of the formulation of the problem
in terms of x rather than A in subsection VIII was indeed necessary.

The spread of the Gaussian depends on the energy of the particles, because the broadening is determined by
Coulomb scattering®. The form of the Gaussian width is given by®? 7'

R 1 3 1
oo 1) = | 8xF () — 3 In [1 +él (fo)} — ol ||, (294)

Here it is implicitly assumed that the energetic particles have the same mass as the thermal ions they are slowing
down on (I think).
An alternative form for dx is given in Ref. [72] (where the parameter « is used, such that dy = v4a):

3 .3
dm; Z, 1+£&2/é2
Y = | —iZefl (1 3 2)In # . (295)
Gy 1422
With my = m; and Z.g = 1, this can be written,
1 3 1 Eg
DXk W) = 2063 0, (1) 1) | gl [1+ 0 (0)] 4 gln | == ), (296)

which is similar, but not the same, as Eq. 294. Why?
If we now solve for A, in terms of the other quantities, then the unknowns that must be specified to fully describe
the energetic particle distribution function are s x p number of y( terms, s X p number of dxo terms, s number of
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€s,runl (the other energy components being fractions of the full energy), and s x k x p number of ng ., terms. The
€s,full €nergies are known, and the x( terms can be determined by geometry. The dx terms will most likely need to be
modeled. Finally, the breakdown of the total energetic particle density profile into its constituent profiles is not easily
determined. It is probably best modeled as well, in which case it is not important to know each n 1, specifically,
but one could rather use a weighting quantity Cs x,(¥) = ns5p(V)As 1 p(P) (mj/sm)% in Eq. 293 instead. For
completeness, however, we will now demonstrate that A ,(¥) can be solved for in terms of the other quantities, as
in Eq. 279, by the definition of the density profile in terms of the distribution function. The difference is that now
each individual particle type must have its own density profile defined, so that:

1,1 2
Moy (V) = / Foppd®v = / / 221 (em’“) &3 fy ppdedy, (297)
—-1J0 j

J

where, of course,

n; (V) = Z Z Zns,k’p(\l/)v (298)
S k P

(which is a further useful constraint on the system not available if C' is used instead).

Let us consider a single beam source, s, at a single injection energy, 5 = €5, with a single deposition surface,
X0 s,p = Xo- Since every other particle type follows the exact same form, the following derivations will hold for each.
Substituting Eq. 294 into Eq. 293, we have:

3 2 2 2
m;\ 2 1 1 —(x— —(x+2+ —(x—2+
f]l-’(s7 U, x) =n;j4, (J> " = — | exp 70( 2X0) + exp —(X 5 X0) + exp —(X 3 Xo) .
€ ) g% 4 220X ox ox dx
(299)
In order to solve for A;,, we substitute Eq. 299 into Eq. 297:
1 1 a1 2 2 2
1 —(x - - 2 —(x—2
n; = 2\/§7TnjAb/ / £ ~— | exp 0(72)(0) + exp (X—I_—;XO) + exp (X—;'XO) dédy.
~1Jo 23 4 g2 0x ox ox ox

(300)

Then we perform the x integration, using :

—(x=c)?

Le o T c+1) c—1
——dx =" |erf —erf ) 301
[1 o 2{r(5>< r<5x>] oy

so that

—

nj = \[271'%71]‘141)/0

1—xo -1—-xo 3+ Xo 1+ xo0 -1+ xo -3+ Xo
f —erf [ — 20 f —erf [ — 20 Fl—1A0) _opf (2T A0 2
[er< dx ) “ dx )+er< dx ) er( dx )+er< dx ) er( dx )}(30)

1l _
:\@ﬂ'%njAb/ e fen (X0T3Y o (X023 | (303)
0 23 4e2 ox p%

Then

-1
14l _
4\@%/ c 5 vr {erf <X0 + 3) —erf (XO?))} dé (304)
0 g3 4g2 4 ox ox
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which is, unfortunately, not as easily integrated as A, was. Now, from Eq. 299

m; 1 [ g
f( \IIaX)_nj(EJ> 3 3 (SX% ghl 5 3 ‘|
b E2 4+ €2 | £2 4+ &2
2 2
—(x — - 2 2
« | exp (x _Xo) _ + exp (x + +X0)3 + exp — (X — 2+ x0) %
15 g2 5 &2 5 &2
§X%féln 2g1+§)] 5Xg711n {2§1+§)] 5x3 — 1ln {2£1+§)]
£24€2 £24€2 £24¢2
—1
1 a1
3 -3
4\@7r/ = B—W erf Xo+ | —erf Xo T dé
e - s 1y |edaeed)]]? s 1y [2areh]]?
5X0—§1n PR 5X0—§ln 5
£2482 g24£2
(305)

Let us now consider the necessary partial derivatives. First, f;/0ec begins in the same manner as the expression
in the previous subsection (Eq. 283), but now includes additional terms because of the dependence of dx on . If we

write the exponential terms of Eq. 299 as
P —(a1/6x)®  g—(a2/6x)®  g—(as/6x)*
L 306
Ve + T T (306)
then
af, 1| 3 & H 1 OF, OF, OF
. £2 m; m;
87; —;b —§< . 3 TLJAb ( J) (Fl +F2 +F3) s njAb ( o > ( 851 —+ aéf 6é3> (307)
41 o)’ el
1| 3 &2 1 1 dox a2
b 3
=fo_ = — F: -1 F3|2— —1 308
Jfb[ 2é§+é§+F1+F2+F35Xd5{1< >+ 2< >+ 3<5X2 )] (308)
_pl| 3 £3 1 déx [2F1a§+F2a§+F3a§ _1] (300)
Tep | 248 4 C% Oy dé |6x2  Fi+ F+ F;
Now, using
) 111 2
X Ec
== 1
we have

2)] . (311)

0f; _ 1 [_3 111 ()
(=x0)*/0x% 4 (x 4+ 2 + x0) e~ (xt2+x0)?/0x* 4 (X — 2 + xo)2e~ (x=2+x0)*/0x
2 2

2 2
X
e~ (Xx=x0)?/0x% 4 e—(x+2+x0)?/0x* + ¢—(Xx—2+x0)?/0x

5x?
Similarly, due to the additional dependence of xo and dxo on ¥ (and of £, on ¥ in the §x term), 0f; /0¥ is not the

same as Eq. 284, but is instead given by the much more complex expression
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0fi _ pp| Ldny  Lddy 1 del | S5+ 5 (312)
oU I |\n; AU T A, dU 2% 4 g2 AV F1+F2+F3
— b Ldn; 1d4, 1 é + 1
J n; dv Ab dv é%+é§ dv F1 +F2+F3
1 90x (2(x—x0)” 2 dxo
) i SV |
< <5>< ov ( o2 toE ) gy |+
190y (2(x +2+ x0)° 2 dxo
By | —2 X (2212 TA0 ) o 2 2 A0
2 (5)( ov ( 0x? X2 (x+2+x0) dv +
186y (2(x -2+ o) 2 dxo
Pyl —=2 (2222200 9 ) - 2 (y—2 A9 313
3 (5 ov ( e 52 X 24 x0) Ty (313)
Continuing, with
3
a6x 1 déyo  1déZ ( 1 1 )
=X =~ 15y + = - 7 (314)
ov by l av T 6dv \ i3 a3
we have:
3
8fj b | Ldn; | 1 dA, 1 déd 1 1
v i nj dU T A, dU 3 F AU 1 eI e (X075 | o (- ZFx0) /X 5y 2

2 (x — xo)? dxo
dXo < 52 L) +2(x—xo0) 5 av | T

2(x +2+ x0)° dxo
( e L) =20x+2+x0) 7y | +

_ 2
(2<X S —1>—2(x 2+XO>‘§$>>
(315)

<€(XX0)2/5X2 ( L )
3 3
+éé 1+é2
3
e—(x+2+><o)2/5x2 ([5X0d3$0 +1€fj€\§ < " 1 T — 1 3)
6 eh el 1+él

3
e—(X—2+X0)2/5X2 <[6X0 ddxo 4 ldgg (

1 1
3 % 2
g2 +&2 14é2

Note that when dxo/d¥ = 0 and déx/d¥ = 0, the above equation reduces to only the first three terms, which is the
same form as Eq. 284 for the isotropic slowing down distribution.
Finally, for this anisotropic case, df;/0x # 0, but rather:

af; fb 2\ [(x—xo)e —Oex0* /87 4 (x4 2 + xo) e~ CF2Hx0)7 /X7 L (y — 2 4 yq) e~ (X=2+x0)*/6x? (316)
ax e~ (x=x0)%/6x? 4 e=(x+2+x0)?/0x? L g—(x—2+x0)?/0x?
N 2 9
s ( ) w(5e)
I €b g _|_€2 ox \ 0x2
[(X ~Xo0) e~ (Xx=x0)?/8x* 4 (x + 2+ xo0) e~ (xH2+x0)? /0% (x = 2+ x0) e—(x—2+><u)2/6x2} ) (317)

Now, before proceeding with the full expression for the §TW? terms based upon these partial derivatives, let us first
examine a special case which is greatly simplified.
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1. The simplified case of a Gaussian with no radial or energy dependence

We note that the Gaussian term in Eq. 293 has energy dependence only in the §x term. If, in Eq. 294, é, < €
(ie. €. — 0), then the energy dependence disappears (dx(e,¥) = dxo(¥)). Such a case might be applicable, for
example, if only very high energy particles (with € > £.) are considered. Secondly, let us take xo and dxo to
be constants, independent of ¥. This is a much simplified case which can not truly represent the geometry of
neutral beam injection except, possibly, in the instance of perpendicular beam injection, in which case yo = 0 on all
surfaces. Now the energy and ¥ dependencies of f]l-’ are the same as ff* in Eq. 277, and therefore 0 fjl? /0e =0 I3 /0e,

8fjl?/8\Il = ﬁf;‘/a\ll, and the integration over de in Egs. 297 and 304 is the same as in Eq. 279. Then

4 X0+3> <X0—3>]_1
Ay = — |erf — erf A, 318
"R { ( oXo ox0 (318)

and

3 el my\? 1 X0+3) <X0—3>}1
b J
(e, U, x)=n;j——— (In(1+E;2 — =4 |erf —erf
fi(& %) ]Sﬂﬂ( ( >> <€b) 6% 422 { <5Xo X0
« 1
VX0

Note that if xyo = 0, and we take the limit of dxo — oo,

[e—u—xw?/ax% 1 e~ Oek24x0)?/0x3 4 e—(x—2+><o>2/6x3] , 0<e<e,-1<xy<Ll (319

4 3 -1 25 2 252 25 2 2
li 2erf = X /ox —(x+2)"/éx —(x—2)%/0x - 1 —
e (ﬁ [ “ (m)] o [ e e ) = stim et @

(320)
So that with xo = 0, and dxg — oo, we recover fb I3 (actually if dxg — oo it is not really necessary for yo to be
zero to represent an isotropic dlstrlbutlon)
Returning to Eq. 319, Eq. 229 for Wy can now be written as

3 s
[(HTy)|* —— : e = (321)
n(wh) + lwj —ivlg + nwp —w €p
_Z Z 2/ 22 ///nJEbAb |X| [—(X—XU)2/6X3+e—(x+2+xo)2/5x§+e—(x—2+><o)2/5xﬁ 355 ——— dédxd¥
~ = €2 + &2
3 1
n 1 dé2 1 dA 1 dn; 3_é2
, % (g hgda\ll&,d‘llbmd‘l’) +§h%€ A%(TICUE*W)
(H/é)| e 4 ket . (322)
n(wh) + lw} G+ nwp — w
For the electrostatic term:
bg 23
W= "2 QWQ/// —(Zje) ’@Jrsl V| =L 7| — (323)
, €28 122 | m2B
J ¢ J
Zie
T N - ‘qur& V(I)O‘ njepAp—|x|
AL 2
1 [ ~(x0 /53 4 o= (HZHX0) 16X | o= (x—2+x0) /JXU} — 2% ) dédyav. (324)
X0 £3 422
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And the anisotropy term:
(Redo)

2-10f;
: 2 /// Bj x 3 dedyd® 32
oWg Zﬁr >B2|\8 X (325)
I T | 2 .Biy2-1
—Z2ﬁw ///njAb et — édsdxd\Il — =) (T 11X
3 m2B €3 + &2 o0X D% b2
[(x Xo) e~ X0 /O (x4 gy e (F2Ex0) /O |y 9 ¢ Xo)e—(x—2+xo)2/5x2} (326)
£3 Bjy2-1
_ B x
fsz\/iw // /rL]é‘bAb o gdsdxd\I! (H/&)" B oy
[(X —_— e~ (x—x0)?/6x* +(x+2+x0) e~ (x+2+x0)?/8x? +(x — 2+ x0) ef(xf2+><o)2/5x2} (327)

Note that when yo = 0, M/Vlbg = 0 because the (H/&)* term and the x? — 1 term are even in Y, while the df /0y term
I

is odd (the derivative of a Gaussian is positive on one side and negative on the other), making the integrand odd, and
the integral from x = —1 to 1 equal to zero.

2. The general case

Let us now return to the general case, in which the Gaussian spread of beam ions in pitch angle has an energy
dependence. Equations 229 and ?? must now be written using the more complicated versions of 0f;/0¢ and 0f;0¥
from Egs. 311 and 315. The equation for df;/0 is the same, from Eq. 317, so that 5WBH is the same as in Eq. 327,
but it now has the added complication in performing the integrations that x¢ is a function of ¥ and dy is a function
of € and W.

(More)
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X. DISCUSSION AND CONCLUSION

Theory shows that the stability of the resistive wall mode in tokamak fusion devices depends upon kinetic effects.
Calculation of the complex mode frequency, w, can either be performed by the solution of a set of self consistent
equations, as was outlined in Sec. II, or through the perturbative approach of calculating changes in potential energy
(6W) due to various effects and inputting these into a dispersion relation for w. Here we have derived general forms
for the W terms that are independent of the particle distribution function that is being considered.

We find that §W can be neatly divided into four parts: éWg, 0We, 6Wg, and §W4.

In reality, only 6Wy is a kinetic term that depends upon the frequency resonance fraction, while §Wg, 6Wg, and
0W 4 are fluid terms, which are strictly real.

- 2
The fact that the electrostatic term is strictly real is evident in Eq. 230 through the [® + &, - V®y| term and the

lack of any poles in the integration. Also, from Eqs. 247, 270, 291, and 324, the electrostatic term is negative definite
for the four specific distribution functions considered here. Therefore it is generally destabilizing (see the discussion
at the end of Sec. IV).

As we have seen, W4 is zero for distribution functions that are isotropic with respect to pitch angle. Only for the
bi-Maxwellian distribution for thermal particles and the anisotropic slowing down distribution for energetic particles
is this term non-zero. One can also see that it is strictly real through the

Discuss the relative magnitudes of the four terms and 1.

Discuss the magnitudes in the context of the different distribution functions. For example, rotation dependence in
the H term for Maxwellian, but not really for energetic species, because the frequencies are much higher.

Conclusion: Basically a summary of what we’ve done here.
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Appendix A: Radial Force Balance

A radial force balance can be obtained from the generalized Ohm’s law, with no radial current or j x B force® " 7:

__Vp
T Zen;

+ U¢B9 - ’U@B¢. (Al)

Which leads to the following equation after dividing through by RBy:

vP B
wE:Qj—w*j—%B—j, (AQ)
where each term is in units of [rad/s|, and:
1 dnT))
v == ) A3
YT T Zen;  dv (43)

Note that wg is the same, independent of the species, since all particles feel the same electric and magnetic fields.
Therefore the balance between the toroidal rotation, diamagnetic frequency, and poloidal rotation terms must be
the same for all particles in radial force balance. Poloidal rotation is often neglected, as it is generally small’*. For
thermal particles each term is on the same order, and 2; = wy, the plasma toroidal rotation. Look at Ref. [75] In
contrast, one can see that for energetic particles it is easy to achieve w.; > wg because of the high energy and low
density of these particles (even if the pressure gradient is similar to thermal particles, the density is typically much
less, so that w,; is large). So, for energetic particles Q; = w.; > wg, wy is often true.

Appendix B: The Wall Time

The wall time, 7, used in Sec. IV for the RWM is given by4?:

T = Modw B, (Bl)

Thw

where 7,, is the wall resistivity, d,, is the wall thickness and b is

b= be ﬁXAoo‘QdS )
s (AxAL) ax (AxVxAL)ds (B2)

Here S, is the surface of the wall, @i is the vector normal to the surface, A, = (&, x B)_ is evaluated as if there

were no wall (the wall is placed at o), and Ay, = (€, x B), is evaluated with the wall at location b.

Note that this definition of the wall time can give a different result from other determinations®?.

Appendix C: Ideal vs. Resistive

In order for the problem to be considered ideal, not resistive, the wall time should be less than the ideal-wall
2 3
tearing mode growth time’® T, = T; T, where the Alfvén time is 74 = 27 R\/fon;m;/ By, and the resistive time is
TR = a®uo/n, with a the local minor radius and resistivity

)= Vome Zoge?In(A)

3 oms
12m2e5Te

(C1)
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Appendix D: The Number of Roots

The RWM dispersion relation has three roots®'216:51 To see this, Eq. 76 can be rewritten:

Wa + Wi +6 _ 1-C
Wy + Wi +61 Apt+ 0’

(7 - iwr) Tw =
or

D=(3-i@) (37 +C) - 1+C, (D2)

where ¥ = 7, and &, = w,7,. Using a simplified model for 6W from Ref. [51], where all frequencies are constant
with respect to magnetic flux coordinate and pitch angle,

o o .8 /oo @*N+(é—g)w*T+wE—wr—w+ —@un — (6= ) Gur + dE — O — 4 g
=~ 1€ - — N N = e s
We 157 Jo WpE — V€Y + W — W, — 1Y —TDE™ — i\/2m; [mTE® + QOp — G — 05
(D3)

one can see from Eqgs. D2 and D3 that in general there are three roots of the RWM kinetic dispersion relation for
(@r,%). This is because performing complex division on the ion and electron terms in Eq. D3 results in a quadratic in
(@r,#%). The nature of these roots was explored in detail in Ref. [51]. Here we examine various terms and circumstances
which may or may not change the number of roots.

a. The Inertial Term

For an internal kink mode, with no wall present, the dispersion relation 6 = —6W,, — §W is recovered from
Eq. D1 by setting 7, = 0. In that case, with §Wx quadratic in (&,5), and with 67 also quadratic in (&,,%) (see
Eq. 62), there are two roots (the MHD and fishbone “branches”) of the internal kink2S.

The plasma inertial term 7 is usually neglected for the RWM. It was included in Egs. D1 and D3 to demonstrate
that it does not change the number of RWM roots. This is because the quadratic nature of C' is already established
by 0Wk, so including I may alter the RWM roots slightly, but it won’t add any new roots.

b. Energetic Particles

If a situation is considered in which the energetic particle effects dominate over thermal ions and electrons, and
SWep ~ (w/wp)In(1 —wp/w), then the resulting dispersion relation has only two roots®. This is a scenario directly
related to the fishbone mode. If, however, energetic particles are considered to have a kinetic effect with a similar
magnitude and form to the thermal ion and electron terms in Eq. D3 (Refs. 19 and 26), then the number of roots
remains three by extension of the arguments above.

c. Collisionless, Small Precession Drift Case

With thermal particles only, the number of roots can be reduced only under a special circumstance!!: if |wp|, |v| <
|wg|. Then not only are the denominators in Eq. D3 the same, but the w,y, w.r, and € dependence in the numerator
cancels, so that C becomes a real constant (C' — 2¢ — 6I/6W,) and the three roots become one. The rotation
frequency of this single root is zero, while the growth rate is determined by Eq. D1. Whether it is stable or unstable
would depend only on the magnitude of C' compared to unity and 4;. One could imagine this scenario (wp,v — 0)
might approximately represent a collisionless plasma with large F2 x B frequency from either wg > w. or w, > wy
(ie large rotation and small density and temperature gradients, or vice versa).
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Appendix E: Equilibrium
The plasma equilibrium relation comes from the force balance of Eq. 8:

dv
dt
In equilibrium the plasma velocity is considered constant, so that

p— =jxB-V.P. (E1)

jxB=V_ P (E2)
Then using Ampere’s Law and the anisotropic pressure tensor from Eq. 35, we have:
1
Ho
Now using Eqgs. 177 and 178 for V - (BB) and V - (i — BB), we have

(VxB)xB=V-(pbb+p. (I-5b)). (E3)

_V;B;+(K+B(V~B>)i:VJ_pJ_—f—Bvlpl—}—(K,_’_B(V.B))(pl_pl). (F4)

How did we get the left hand side, exactly?

In the perpendicular direction, the equilibrium is?°

B2 2
-V, —+k—=V +K - ) ES5
1 %0 0 1P (pu pl) (E5)
B? B? to (p) —pL)
— =k— (11— ———= E6
Ve (2uo HM) o ( B? (E6)
Vo (ot g i) g ) ) = (©1)
1 20 2 Py TpPL B py—pbL = %0 o
v - 1 (p)+pL)) = W2 (E8)
L1135 o B pyTpL)| = 0 o
B2 > 2
Vil—+ps, ) =k—, E9
- <2M0 P Ho (E9)
where
D +pL
o = 5 E10
5 (E10)
with the anisotropy parameter o defined in Eq. 134.
In the isotropic case, the equilibrium relation reduces to

B2 B2
v, (+p) = k. (E11)

240 1o

The equilibrium relation in the anisotropic equilibrium pressure case can be written in this same form, if we define
a new quantity which is like a corrected magnetic field

D =B/, (E12)
so that,

2

D2 1 D
v, (=] 4= — E13
L (QMO +5 (P|+PL)) o (E13)

This is useful because it means that the plasma equilibrium can be considered to first order the isotropic equilibrium,
and then having an anisotropic correction of the second order.
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Appendix F: The Quasineutrality Condition

In order to find the quantity Z= Zje (<i> +& - tho) (from Eq. 142) to use in calculating the electrostatic terms

W, we must assume a quasineutrality condition. Specifically, if n = ng + et~ then
Z Zj?’Lj =0— Z Zj’flj =0. (Fl)
J J

The solution for Zj Z;n; is similar to that for P in Eq. 138,2% with fj from Eq. 139, but with Z; instead of m; vv.
Therefore, from Eq. 140,

. 8 18 j , af:\ _

0J; miv 0f; &, (& fil 5
M@u (B (B”+£J‘ VB))_ B2 EVL.B—’—Z]e(@"FSJ_'V@O)E d°v = 0. (F2)

Z Z; /x;“L Vfidv = (&, - V)Z/%— 0, (F3)

Now, noting that:

we find
(Redo these equations.)

= zfja ZHT(()—an(%) H fjs

(& .V<1>> 722903 3y iy

e( e 0 ;/ 7 Oe ;l; /nwD —s—lwb—woﬁ—i—nwE—w V+Z/

(F4)
- o afj of;
~ fi s ZHT I*”ap> H Of;
e(®+&L -V = /22 —L 3y d3v + Zipn— Jd

( 1 0) Zj: ) Oe ZJ:,ZOC uD +lw,711/ﬁ+nwE7w Z

(FO)

Note that the quantity we wish to solve for, e (<i> + & - V<I>0), appears on both sides of the equation, since it
appears in H (see Eq. 204). The above equation is exact, but for simplification we will now make the assumption
that the quasineutrality holds between isotropic thermal electrons and ions (i.e. that energetic ions are not important
and 9f;/0p = 0). Now the quasineutrality condition is really 7; = fie, or Y., . Z; [ fjd®v =0, and

afj of;
= f 3 ZHT( Oe n8P¢) 2\/§7T 1
e(®+€L-Vdy) = / -z Jd e2dyde | (F6
( & 0) Z ;l;oo n(w}) +lwb—wﬁ+nwE mj% xde | (F6)
(ne n) 5 i 2m// (21T + 72 (@+5L.v¢o))(wfgg ey "
= + - €2 €.
T. T, e 1o M wD)—i—lwb Wl + nwp —w X
(F7)
Note that we have used:
, Zie (=
(H') = (H) = 2% (B +€, - Vo) ()
J
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for the non-electrostatic terms of H, to more explicitly show the nonlinearity of the equation. This results from
Eq. 204. Now, using the Maxwellian on the right hand side, and for n = 1, we have:

e(i>+£¢-V<I>O)=<m+ne> ZZMW// Z;H'T; +e(‘1>+€J_ V%))/\ij ;2etdyde (F9)
4 € i,e l=—o0
-1 foe)
:<”z+”e> Y ”ﬂ// ZiH'Ty+ ¢ (& + €1 Vo) ) \hdxete ae (F10)
4 € i€ lffoo
-1 [e’)
~(5+5) T g [ [ (st ce(@ e vy dnee
g € i,e l=—o0
_ <”z+”e>1z i 1 <Z—<H'/é)/ Mighe™dz e (@ + €L Vo) T-‘l/AMééeédé> dx
D) = R\ s

(F12)

This is the same expression as in Ref. [10], Eq. (12), but with A integration replaced by x.

Appendix G: Collisionality

There are several possibilities of increasing complexity that can be used for the collision operator C( fj) in the drift
kinetic equation (Eq. 84)2°. The simplest form is a Krook operator, where we define an effective collision frequency
Vegt SO that C/( f]) = —Veft f] Since the important collisions to consider in Eq. 84 are momentum-transferring collisions,
we will consider vj;, where j is the test particle (electrons, thermal ions, fast ions, or alpha particles), and i denotes
the bulk thermal ions. Three simple expressions are: collisionless:

vy = O7 (Gl)

no energy dependence (SI units)*®

\fn Z4etIn A 1

1 (¥) = €, (G2)
127T2€0 2T2

and simple energy dependence:

vo(e, W) = 1473, (G3)

Here, mj; = m;m;/(m; + m;), and € is the particle energy normalized by the representative distribution function
energy. Also, the inclusion of the inverse aspect ratio, €., makes veg the frequency of collisions causing a scattering
step on the order of the banana width”.

As long as we use Eqs. G1-G3, veg can be considered constant and the bounce-averaged collision operator can be
written, simply:

C(fy) = ~verfs- (G4)

However, if the collision operator is dependent on the pitch angle x, a bounce-average must be taken. This case will
be dealt with below, in subsection G 2.

Finally, recall that in Sec. V we considered the Vlasov equation for a solution to the collisionless perturbed distri-
bution function, fj If we now assume a collisional distribution function g; with the form g; = f;e”***, and substitute
for f; in the drlft kinetic equation, Eq. 84, then we find
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dj; F
eil/efft% _Veffefuefftgj + mi vajefvefft _ Veffgjeiue“t, (G5)
J
dj; F
A= | Vg, =0. (G6)
J

In other words, using the solution for the collisionless f is fine, so long as we add collisionality back into the formulation,
in the form of fe¥e#*  at the appropriate time. This is performed in appendix H.

1. Particle, Momentum, and Energy Conserving Krook Operator

The Krook operator discussed above, C( f]) = —Veoff fj, is simple and easily implemented, but it does not conserve
momentum. A more complete form, which results from linearization of the Krook operator, that conserves particles,
momentum, and energy could be used. Note that this form would be applicable for like particle collisions (such as
ion-ion collisions) which conserve momentum, not for ion-electron collisions, which can transfer momentum between
the species. In Refs. [78] and [79] such a form is written, but it assumes a non-energy dependent collision frequency
and a Maxwellian distribution of particles:

C(fj) = —vesrfj + vesr [

iy mgupyy Ty, 03
n; + T, + T, (5 2)] . (GT7)

Here, u is... Can this be generalized, and used?5":%!

2. Lorentz Collisionality

A potentially more accurate way of including collisionality is through a Lorentz operator with complex energy
dependence, and a pitch-angle dependence®2:83:

0

VE
1 1 . 1 2
Voo, W) = Svoey | Zest + =+ —= (2— €7 / et dt] AT (G8)
0

Ve VT ox dx

This method has been used previously by Fu et al.®3 to study the effect of electron collisionality on the stability of
toroidicity-inducted Alfvén eigenmodes (TAEs). Note that the inclusion of the inverse aspect ratio in v; and vy has
been removed here (the ¢, in Eq. G8 cancels with the €, ! in Eq. G2). Instead, the above expression represents a
bounce-averaged pitch angle scattering operator.

If we now define the bracketed quantity in Eq. G8 as Il., and take a bounce-average of the drift kinetic equation,

RE

the result is a differential equation which is best solved by a numerical, Monte Carlo calculation®? of f; This approach
may be the subject of future studies.

1 B) f
vaj> = _5”267”118& (1-x*) =2 (G9)

Appendix H: The Integral Over the Unperturbed Orbits

Consider the full form of the perturbation of position of the plasma in time and space:

£J_ — éle—iwt—inqb — Zgfe—iwtei(me(t)—nqﬁ(t))el/g“t’ (Hl)
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where we have decomposed &, into Fourier harmonics in the poloidal angle # with poloidal mode number m, and
added an explicit collisionality dependence as discussed in appendix G (with v/ = v, 11, or v5). Now, if we are to
integrate the above term, then:

t t )
/ €L dt — / Zgfe—iwtei(mG(t)—nqﬁ(t))euiﬂtdt/. (H2)
— 00 — 00 m

Note that e~®tevdnt = ¢=iwrte(1+%)t Therefore a condition on the convergence of this integral is v + v/ > 0.

Otherwise at ¢ = —oco the integrand is infinite. With sufficiently high v/, this is not an issue, even with a small
negative 7. But when the plasma is considered to be collisionless, one must take care?”. If a calculation for v < 0 is
required, analytic continuation of the integral must be performed®.

Let us now change the integration to 7 = ¢’ — ¢. Then:

t ) 0
/ £J_dt/ _ Z gfe—iwtei(me(t)—nqﬁ(t))eugfft / e—ineueffTeim(G(t’)—9(t))e—in(¢(t')—¢(t))d7_ (H?))
o oy —00
0 )
_ / o ilwivi )T —in(6(t) —6(1)) Z £ eim(O(t)=0(0) g (H4)

Now we must find expressions for 0(t') — 6(¢) and ¢(t') — ¢(t) in terms of 7. Let us write expressions for df/dt and

do/dt.

o 0
% —Bg+vg~V¢9, (H5)
dp 0
= = g +vg - Vo, (H6)

where vg is the guiding center velocity, given by:

. ExB ofbx(b-V)b+vibxVB/(2B)
ve = v b+ +
g I B2 We

:U\|B+VE><B+VDa (HS)

(H7)

with w. = eB/m; and b=B /B. The precession drift velocity is defined here as the sum of the curvature and VB
drifts.
Now, let us relate the two parameters by writing:

dp _vb-Vé+ (vexn +vD)- Vo
do U||B-V9+(VE><B +VD)~V9.

(H9)

We can now consider the E' x B and drift velocities to be small compared to the parallel velocity. Then this fraction has
the form (z+¢€1)/(y+e€2), where the € terms are small compared to  and y. Then we can write (z+¢€1)(y—e2)/(y*+€3).
Keeping only quantities of first order in € and using

b-Vo
== , H10
1= T 0 (H10)
we can write
d6 — qdg + YExB £ VD)V —4(Vexn T VD) VO )y (H11)

UHB~ \Y]
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Now let us define,

¢(t') — ¢(t) = —wpT —wpT, (H12)

where the E x B frequency is:

1 1 ") vg- (V¢ —qVe
wp = ~(vg -V (g0 — ¢)) = _7/ ve (Vo —avh) (H13)
T T Jo(t) vyb- V6
and the magnetic precession drift frequency is'!:
1 1 [ 1 %) vp - (Vo —qVe 1 [
wD=—<vD~v(qe—¢>>—f/ qu:—f/ vo - (Vé—4 >d9——/ ado. (H14)
T T Jo(t) T Jo(t) 11||b-V0 T Jot)

Further derivation of wp and wg from this point are given in appendices J and K. Note that sometimes wg is
kept together with wp'?13:15(je. the velocities are not separated in Eq. H8). Here they are separated to make the
dependence on wgr more clear.

So, returning to Eq. H4

t 0 .
/ £J_dt/ _ / e—i(w—i—il/g“—nwD—nwE)T Z gfeim(e(t’)fe(t))d,r. (H15)
Now, somehow:
ngeim(e(t’)—e(t)) —¢, Z gilent (H16)
m l=—0c0

for trapped particles. Make general for trapped or circulating particles. Here [ is the bounce harmonic and the bounce
frequency is given by:

wp = . (H17)

The bounce frequency is derived further in appendix I. Look carefully at Ref. [12], Eqs. 13 and 14.
Finally,

t 0 .
/ fj_dt/ — £J_ Z/ e—i(w+iugff—nwD—lwb—nwE)‘rdT (ng)
—o0 ] J—oo

=y T 1 (H19)
l

i(nwp + lwy — iVl + nwp — w)

Appendix I: Bounce Frequency

Starting from Eq. H17 for w;,, we rewrite:

wp = . (Il)

Wy = . (12)



1. Large Aspect Ratio (Cylindrical) Approximation

In the large aspect ratio limit, the particle bounce frequency can be written!!:3%85:

wy V2N T (trapped)
V2e/m;  AqRo K(k) PP

Wh VI—-A+e A 7

= (circulating).

i 2R K(/R)

where A = uBgy/e, €, = /Ry, K is the complete elliptic integral of the first kind, and

L [L=A+eA]
- 2¢, A ’
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(I5)

Reference [86] shows the ion bounce frequency calculated from Eq. 12 by MISK compared to the large aspect ratio

approximation, using an analytical Solov’ev equilibrium also used in Ref. [12].

Appendix J: Magnetic Precession Drift Frequency

Starting from Eq. H14 for wp, we rewrite:

o 1 /G(t’) vp - (Vé — qV) o 1 /G(t/) 4df
T Jo(t) v b- Vo T Jo)
I
0(t")
= ! iVD (Vo —qVo)de — 1/ qd#,
TJY T Jo(t)

where we have used d€ = df/(b - V).
Now let us consider vp - V (¢ — ¢), using vp from Eq. H7.

(w2 Le2lg _
VD.V(qt‘)—qb)fwc (U|bX"ﬁ+27}LBbXVB> V (g8 — ¢)
1 1 ,V.B
1 1 ,V.,B
=— (quVG—Bqub)-(vig—&-len)

w.B 2
1 . 1,V,B
=05 (qBs8ys x VO — By x Vo) - (21;33 + vﬁm) .

Now using the definition of ¢ from Eq. H10 and also By = (VU x &,) /R, we have

1 b -V¢B,é, x VO 1 A 1 V.B
VD V(60— 0) =~ ( bove  R(VYxE) W) | (2”%“33 * mf‘“"’”)
1 B¢ . V¢B¢é¢ x Vo 1 “ 1 V.B
=G < B,.vo R (VX)X V0| gmpl =g+ mefs

2 (%) 4 .
_ 1! B¢(R)WW_1(WX§)X &\ (1, 2 VLB
Z;eB? 1By[| VY R ¢ R 2 LR

2
+ mJUH K;) s
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where we have used V¢ = &,/R. Now, since V§/|V6| = Byg/|Byg|, we have

vp -V (g0 — ¢) = Zje}13232 (1223% x Bg + V@) : (;mjviVEB + mjvﬁn) (J10)
- _Zjel%2232 (?}?éqb x (VU x &) + V\I/> . <;ijiV‘BJSB +mjv2|f<;> (J11)
=gz () o (st T ) o
= Zjell%QBgV\I/ . (;mjvivgB + mjvlzn) . (J13)

Let us now replace k, using Eq. E9, the equilibrium relation, to find

1 B?
K=13VL (Mopo + 2) ; (J14)
so that
___ 1 1 2ViB . 5 popo\ 1o B?
VD -V (g0 — ¢) = ~Zemm VY (2m]vl L= 4y (VJ_ ( = ) A (J15)
1 VJ_B 1 2 2 Ho dpg 2
1 Vv .V B to dps 2
= — B+2(e—uB ——|VVU|“2(e — uB) ). 1
e (g B+ 2~ b))+ 5y VU2 e — ) (117)
Now writing in terms of A = uBy/e, and with [V¥|? = R?2B2, we can write
€ VU .-VB (AB AB 210 dps 9 AB
V(g0 —¢) = — o122 PO gy (1- =2 1
vp - V(a0 —9) Zjevq/|2< B (Bo + ( BO>) 5z ap VY Bo (J18)
e (VU.VB /(2 A 2up dps (1 A
- - (2= Y= 2 _ = A (e 1
Zje< Vo2 (B BO>+ B d¥ \B B, (J19)
Therefore
1 e [de[VU-VB/2 A 2o dps (1 A 1 o)
T DAy e [t iy R - do 320
“b sze/v| [ Vo2 <B BO>+ B dv \B B, T/g(t) ¢ (J20)

Now let us examine the second term. We note that ¢ is a function of ¥ and 6, ¢(, 6). Let us then write ¥ in terms
of the constant of motion, F,. Then

Py,  mjRug
v = -2 _ . 21
q(¥,0) =q (Zje Ze ,9) (J21)

Taylor expanding this expression, we find

Py 0q m;R
~q( Lo o) - 92 . 22
171 (Zje’9> U Ze (722)

Then



50

o(t") o(t") 9
q m]
— df ~ — 0|do— — v4db. 2
e(t q M /0 % o v (J23)

The first term is zero over a complete bounce because Py is constant along the particle’s motion. The second term is
non-zero because vg4 change sign between the bounce motion in one direction and the return. Now, finally

1 e [de[VU-VB /2 A 2410 dpy A 1 ¢ /9(” dq . vg
- e L | SL2R-5d. J24
“b TZe/v| { V2 (B BO>+ B av \B " Bo)| T 77 Jouy 0¥ (J24)

An alternative formula for the bounce-averaged magnetic precession drift frequency (used in MARS-K) comes from
Ref. [87], and is given by:

1 0J/o0v
= —_— J25
o) = 8T o (125)
where
= /ij”dl, (J26)
is the equilibrium longitudinal invariant of the particle parallel motion.
1. Implementation in MISK
The MISK code solves wp in the form of Eq. J24, with the following definition:
VvV .VB VU . VB2
wp1 = — = — (J27)

VU2 2BV

so that

1 ¢ de 2 A Quodp, (1 A 1 e [ aq v,
= o) -2 () |+ =— 2 : 2
“p TvZe/ (v /v) [ “o (B BO> B av \B By} t0Z Jyu 00 By (728)

In PEST, the magnetic field is defined by*3:

B =By [fV¢ x VUp|> + RygV ¢, (J29)

and therefore

1
B% = 3 [f2VUp|*+ Rig’] - (J30)

where Wp is the PEST ¥, which is defined by VUp = 27 fVU.

Using
Byl Rg?/X?
* =Bl _”'\/; ”'\/ PN+ REg?) /X7 .




ol

1 ¢ de 2 A 2 1d(uops)\ (1 A 1 e [ 710q)\ vy 2X
2 ) - S 20 - = - = Bt S |
wp TvZe/ (v1/v) [ “B (B Bo> B ”(27r v B B)| e /g(t) Nrow) v s I @

(J32)
Now we can write wgy in terms of the PEST ¥,
QWfV\I/p
Wwp1 = — 2BV BV ( f2|V\I’P|2+R(2)92]> (J33)
2nfVUp 9 1 2y
— QBV\PP< = [F2IVUp|* + Rig] + %3 [2IVUp2fVf+2R3gVg + [V ([VUp[?)] (J34)
2rfVVUp 9 1 f ,d|VUp|? 5 d|VUp|?
=———=——=|—=B"+ — |2|VUp v 2 —VUp T _—
QBV\I/p|2< + {W |f V p+ Rogd\y VUp+ f iy VUp + f 70 \Y
(J35)
2B2VVp VV¥p 5, df 2d|V\I!p| 5 d|VUp|?
-9 _ . Y
Wf(ZB|V‘1/p|2X SBVUp X2 {2|V\Ilp| qusz’P”ROgd\p VUp+ f a0y VUp+ f 70 V(‘)})
(J36)
_orf VV¥pB _|V\pr\2f a R3 dg _ f? d|V\Ilp|2_ f2Vovee d|VUp|? (J37)
B X|VUp|? BX? " dUp BXdi\I/p 2BX? d\I/p 2BX2|VUp|2 db

—or £2 _ 2 2 2
(J38)
@2rf)? (fVUp)B 1 ) dg df N AV p|?
= - 2w — | (2 U - 2 avErl
Xf@rnf[VUp)  BfXZ Iog fd\If @rf)+f fd\pr @2rfIVEp?) + S\ 2m T 0,
1 d|V¥pl|?
- 2 —_— 2 v
B (2X?2 (27Tf|V\pr|2))f< mf <f a0 (2 fIVEpVI) (J39)
2. Large Aspect Ratio (Cylindrical) Approximation
The large aspect ratio precession drift frequency is!!->7:85,88-91.
(wp) 2gA E (k%) ) 1
= 2s+1 2s (k> —1) — =
e/e  RZe.By (2s+ )K(kz) +2s (K —1) -5, (J40)

where s = (r/q)(dg/dr) is the magnetic shear and E is the complete elliptic integral of the second kind. Reference
[86] shows the ion precession drift frequency calculated from Eq. J24 by MISK compared to the large aspect ratio
approximation, using an analytical Solov’ev equilibrium also used in Ref. [12].

3. Drift Reversal

When wp is negative, particles precess in the opposite direction of the plasma current, a phenomenon known as
drift reversal.
(More)®8

Appendix K: E X B Frequency

Beginning with Eq. H13 for wg, we can see that the derivation follows the same pattern as that of wp outlined in
appendix J. If we write vg in the form
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v = b x (_g) , (K1)

then we can start from Eq. J13 and replace the quantity in parentheses with —Z;e B(E/B). Then

1 1 1
=—— | = (—=—==V¥ . (—Z;eE) | dt K2
W /|< ZemE VY (e >) (K2)
1 dé (VIeVP
__1 K3
7/v|<W|2) (K3)
dd
= (K4)

Appendix L: Self-adjointness of the Anisotropic §Wr

XXX

Appendix M: Derivation of the CGL Perturbed Pressures using the Bi-Maxwellian Distribution Function

The perturbed pressures, p, and p can be derived in the same manner as p in Eq. 44 in Sec. II, but in a more
general way by using double-polytropic laws?293 as replacements for the adiabatic equation. Instead of Eq. 38, we

will use:

d (p BN _

dt( ) -o (1)
d (pLB'"*

4 _o. M2
dt ( P > 0 (M2)

The Chew-Golberger-Low (CGL)% double-adiabatic equations®®55:9%:9 which are derived from the first and second
adiabatic invariants®” under the assumption of negligible heat flux®®%° have v = 3 and v, = 2. The isothermal case
is recovered with v =1, v, = 1.

From Eq. M1, we find“399:

d Py (OB Py (Op
BN +v-Vp=—(y—-1) §b~ <m+v~VB) +’y‘|? at+v~Vp> (M3)
(—iw—i—vo . V)ﬁH +\~/~VpH = — (’)/H — 1) %E) ((—iw+v0 . V)B-i-\?VB()) +’YH%((—Z@J+V0 . V)ﬁ—i—\?Vpo)
(M4)
(—iw+vo - V) (P + €L Vp)) = (—iw+vo - V) { (m—1) %B : (B +&1 - VBo) + W% (p+&L- Vpo)} (M5)
Now using Egs. 25 for B and 34 for p, we have:
- Pl ¢ p
pp=—¢L-Vp—(y—-1) %b- (-Bo(V-€1)+&1-VBg) + VH% (=poV - €1) (M6)
==& -Vp—(—Dp(k-€L—-V-£€L)—yp V- €L (MT7)
=& -Vp—pV-€L+(L—vy)pr-£&L. (M8)

Similarly, for p, ,
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pr=—6-Vpr—(1—-7v)p1(k-€L -V -£1)—p1V-&L (M9)
=—€1-Vp, —vp V&L +(ve—1)pik-€1. (M10)

For the CGL case this leads finally to:

pp=—&L -Vp—pV-&L—2pk-E1, (M11)
pr=-81-VpL—2p. V& +pik-&1, (M12)

while for the isothermal case we recover the result of Eq. 44.
These expressions can also be recovered from Eq. 72 (neglecting the electrostatic contribution):

P — ij /vv (fj + fj E VB) d3v, (M13)
J

using a bi-Maxwellian equilibrium distribution function and our form of f] from Eq. 137, with certain assumptions.

Let us now examine f] in the limit of large w (which really pertains to high frequency modes, not the RWM). Then,
in Eq. 137, w(0f;/0¢) > n(0f;/0P;), and (s;) ~ (HT;)/(im;w), so that:

2 0f; z By of;
w—00 _ __ . ) N 7. . — =43
fyo =€ V= (T~ Ze (8460 V) ) — g 5L (M14)
Now
Fomee 4 afﬂg VB = fy - g%fﬂg VB (M15)
— afa 5 1 Ofi (5
— & V- (<HT> Zye (®+€L- Vo)) - 5o, (B +¢.-vB) (M16)
=—€.-Vfj—m af] (2 iV €J_+2UJ_K' £ —vjk- €J_> afJ (k- €L +V-€1),
(M17)
where in the last line we have used Eqgs. 204 and 141, for (H) and P’H'
From Eq. 251, the bi-Maxwellian distribution has the form:
mi\ 5 1 —e-uB _ uB
e () L, oo
2m 3
TiuT3
so that
af; fi
20y I M1
Oe Tj” ’ ( 9)
and
o 11
f¢B<). M20
on U\ T (M20)

Now we can make substitutions, using Eqs. M19, and M20, and we find that:



comsoo . Of; 1
i +5§&yVB:—&;Vﬁ+ﬂm@ﬂ

1 1
<2Uiv'£J_+2UiK'/'£J_—'U|2KZ'£J_>

1 1 1 1
e () (Mt by )
TINT L Ty ) \2 2

J

:—ﬁuvﬁ+ﬁm4

1 1 (1, 1,

We then define the quantities Ry, Ra, and Rj3 as in Ref. [100]:

R, :ij/vﬁfjd?’v
J

:27ij//’UﬁL’ULTLj(

5
2

Ve TJ'LTJ'%H o

5
2

_myny 1 3ﬁ<
Vor TjJ‘Tj%H !
3

P

2

2 2
: _mi (2l
@)%;6 2 <T”+Ti)d’[)”d’ljl
T

T
T2
I+

m; vﬁ

2
m2n; 1 oo _ J o0 7rnjvj_
j T :
=7 / Uﬁe il doy vie 2Tl dv,
0

2\ F 1 (2T,
m; 2 m;

1 .
Ry =3 ij /vﬁvifjddv
j

5
2

Jll
5
m?

=5 T
NoT I
VI T T

_pypL

3l

5
2y,
_mjn; 1

m;n; 1 /°°
24/ 21 TjLTf o

ini 1 rm

, ot o . _mpd
vjje Nl dy) vie 2Tl dvy
0

E 2
21\ ¥ 1 (21
m]’ 2 mj

2
m;uv
oo il

;1 /
= I
227 Tj, T2 /-

0o mjv?
g Loomed
e Tl dv”/ vie Tl dv
0

2T||)5 <2Tl)3
= 7T —_— —
2427 TJ'J—TJ%H vr ( m; m;

p

Now from Eq. M13
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(M21)

(M22)

(M23)

(M24)

(M25)

(M26)

(M27)

(M28)

(M29)

(M30)

(M31)

(M32)

(M33)

(M34)

(M35)



P :ij/“\l (J“H“ (%E VB) d*v
J

1 1 1 1
—_——— . . 2 . . J— 2 . — _— 2 . —_—— 2 .
=—&.-Vp+ g mj/vuf]mj [T'l( G &_)JrTjJ_ (21@& &L 2le &1
=—&1- Vpn—*RlN €J_+7R2""' SL_7R2V €1

T
=—&1.-Vp—3pKk-&L +P\|H'$¢ -pV-&L
=—&1-Vp—pV-&L-2pk-&L,

and

- 1 ~ 0
L=y 3™ /vi (f;HOO 9l; SpéL VB> d*v
7

_ 1 2 1 2 1 1 2 1 2 3
——EL'VpJ_+zj:2mj/vJ_fjmj |:m(—Ull‘é'gL)"‘h<2’UJ_F-'/'£J__2'UJ_V'£J_ d°v

ms
— ¢ - Vpi - MRk R -
§1-Vpy T, ok €1 + 2TJJ_ 3k &1 2/1—’jJ_

=—&,-Vp, —p1k-€§1L+2p1k-6§1 —2p. V- &)
=—&,-Vp, =2, V- &L +p1Kk-€1,

RV - &,

JES
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(M36)

(M37)

(M38)

(M39)
(MA40)

(M41)

(M42)

(M43)

(M44)
(M45)

which are the same as Eqs. M11 and M12. Note that when T} = T;1 the bi-Maxwellian distribution reduces to a
Maxwellian, and p; = p), but the above expressions for p; and p; do not equal each other, nor do they reduce to

Eq. 44, because of the starting point of Eqs. M1 and M2 instead of Eq. 38.

Appendix N: FLR

Finite orbit widths are captured by MISHKA%4? .

§j:—%[BXVL'(B'V)&J_“FB'(BXVL)'V&J_}
+4Wcj {VLXB'VL'VSJ_‘FVL'(VLXB)'VSJ_]
;jtjb V x €L
(e e e

2
v”vL
2wcj

(i? +&4 - V<I>0>

v. B (b VlnB) (Bxgl) —& xB-VBH
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e Write abstract.
e Write discussion and conclusions.

e Complete the derivation of the integral over the unperturbed orbits. Make it general for trapped or circulating
particles, and then update the denominators in the rest of the text to reflect that.

e What are the finite Larmor radius terms? Make an appendix about them?

e 0I/0W comparison in Eq. 77. In Ref. [12] Yueqiang writes, “the plasma inertia effect... can often be neglected
as long as the resistive wall time is orders of magnitude larger than the Alfvén time.” And in Ref. [63] he writes,
“the inertia is neglected assuming that the amplitude of the mode eigenvalue ~ is much smaller than the Alfvén
frequency w4.”

e What about the extra W term in Sec. 777

e Centrifugal terms.

e Complete drift reversal subsection 77.

e Write appendix about rational surfaces and consider effective magnetic shear?

e Look at Menard’s APS 2010 poster for formulation of radial force balance for rotation terms. Also look at Ron’s
paper.



o7

1E. Strait, T. Taylor, A. Turnbull, J. Ferron, L. Lao, B. Rice, O. Sauter, S. Thompson, and D. Wroblewski, Physical Review Letters
74, 2483 (1995).

28. A. Sabbagh, A. C. Sontag, J. M. Bialek, D. A. Gates, A. H. Glasser, J. E. Menard, W. Zhu, M. G. Bell, R. E. Bell, A. Bondeson,
C. E. Bush, J. D. Callen, M. S. Chu, C. C. Hegna, S. M. Kaye, L. L. Lao, B. P. LeBlanc, Y. Q. Liu, R. Maingi, D. Mueller, K. C.
Shaing, D. Stutman, K. Tritz, and C. Zhang, Nuclear Fusion 46, 635 (2006).

3A. Bondeson and D. Ward, Physical Review Letters 72, 2709 (1994).

4R. Betti and J. P. Freidberg, Physical Review Letters 74, 2949 (1995).

5R. Fitzpatrick and A. Y. Aydemir, Nuclear Fusion 36, 11 (1996).

6A. C. Sontag, S. A. Sabbagh, W. Zhu, J. E. Menard, R. E. Bell, J. M. Bialek, M. G. Bell, D. A. Gates, A. H. Glasser, B. P. LeBlanc,
K. C. Shaing, D. Stutman, and K. Tritz, Nuclear Fusion 47, 1005 (2007).

"H. Reimerdes, A. M. Garafalo, G. L. Jackson, M. Okabayashi, E. J. Strait, M. S. Chu, Y. In, R. J. La Haye, M. Lanctot, Y. Liu,
G. Navratil, W. Solomon, H. Takahashi, and R. Groebner, Physical Review Letters 98, 055001 (2007).

8H. Reimerdes, A. M. Garafalo, M. Okabayashi, E. J. Strait, R. Betti, M. S. Chu, B. Hu, Y. In, G. L. Jackson, R. La Haye, M. Lanctot,
Y. Liu, G. Navratil, W. Solomon, H. Takahashi, R. Groebner, and the DIII-D team, Plasma Physics and Controlled Fusion 49, B349
(2007).

9B. Hu and R. Betti, Physical Review Letters 93, 105002 (2004).

10B. Hu, R. Betti, and J. Manickam, Physics of Plasmas 12, 057301 (2005).

Y. Liu, M. S. Chu, C. G. Gimblett, and R. J. Hastie, Physics of Plasmas 15, 092505 (2008).
12y. Liu, M. S. Chy, I. T. Chapman, and T. C. Hender, Physics of Plasmas 15, 112503 (2008).
13Y. Liu, M. S. Chu, I. T. Chapman, and T. C. Hender, Nuclear Fusion 49, 035004 (2009).

141 T. Chapman, V. G. Igochine, J. P. Graves, S. D. Pinches, A. Gude, 1. Jenkins, M. Maraschek, and G. Tardini, Nuclear Fusion 49,
035006 (2009).

151, T. Chapman, C. G. Gimblett, M. P. Gryaznevich, T. C. Hender, D. F. Howell, Y. Q. Liu, and S. D. Pinches, Plasma Physics and
Controlled Fusion 51, 055015 (2009).

16y, Liu, I. T. Chapman, M. S. Chu, H. Reimerdes, F. Villone, R. Albanese, G. Ambrosino, A. M. Garofalo, C. G. Gimblett, R. J. Hastie,
T. C. Hender, G. L. Jackson, R. J. La Haye, M. Okabayashi, A. Pironti, A. Portone, G. Rubinacci, and E. J. Strait, Physics of Plasmas
16, 056113 (2009).
17S. A. Sabbagh, J. W. Berkery, R. E. Bell, J. M. Bialek, S. P. Gerhardt, J. E. Menard, R. Betti, D. A. Gates, B. Hu, O. N. Katsuro-
Hopkins, B. P. LeBlanc, F. M. Levinton, J. Manickam, K. Tritz, and H. Yuh, Nuclear Fusion 50, 025020 (2010).

18J. W. Berkery, S. A. Sabbagh, R. Betti, B. Hu, R. E. Bell, S. P. Gerhardt, J. Manickam, and K. Tritz, Physical Review Letters 104,
035003 (2010).

19J. W. Berkery, S. A. Sabbagh, H. Reimerdes, R. Betti, B. Hu, R. E. Bell, S. P. Gerhardt, J. Manickam, and M. Podesta, Physics of
Plasmas 17, 082504 (2010).

20J. W. Berkery, S. A. Sabbagh, R. Betti, R. E. Bell, S. P. Gerhardt, B. P. LeBlanc, and H. Yuh, Physical Review Letters 106, 075004
(2011).

21G. Z. Hao, Y. Q. Liu, A. K. Wang, H. B. Jiang, G. Lu, H. D. He, and X. M. Qiu, Physics of Plasmas 18, 032513 (2011).

221, Guazzotto, R. Betti, J. W. Berkery, and S. A. Sabbagh, “Poster: A comprehensive model for the kinetic stability of axisymmetric
plasmas,” International Sherwood Fusion Theory Conference, Austin, TX, May 2-4 (2011).

23H. Reimerdes, J. W. Berkery, M. J. Lanctot, A. M. Garofalo, J. M. Hanson, Y. In, M. Okabayashi, S. A. Sabbagh, and E. J. Strait,
Physical Review Letters 106, 215002 (2011).

241, T. Chapman, C. G. Gimblett, M. P. Gryaznevich, T. C. Hender, D. F. Howell, Y. Q. Liu, and S. D. Pinches, Plasma Physics and
Controlled Fusion 53, 065022 (2011).

25E. Frieman and M. Rotenberg, Reviews of Modern Physics 32, 898 (1960).

26B. Hu, R. Betti, and J. Manickam, Physics of Plasmas 13, 112505 (2006).

27]. Freidberg, Reviews of Modern Physics 54, 801 (1982).

28M. S. Chu, J. M. Greene, T. H. Jensen, R. L. Miller, A. Bondeson, R. W. Johnson, and M. E. Mauel, Physics of Plasmas 2, 2236
(1995).

29T. Antonsen and Y. Lee, Physics of Fluids 25, 132 (1982).

308, Preische, J. Manickam, and J. Johnson, Computer Physics Communications 76, 318 (1993).

31]. Freidberg, Ideal Magnetohydrodynamics (Springer, 1987).

32R. Betti and J. P. Freidberg, Physics of Fluids B 4, 1465 (1992).

33J. W. Van Dam, Journal of the Korean Physical Society 31, S93 (1997).

34J. Van Dam, M. Rosenbluth, and Y. Lee, Physics of Fluids 25, 1349 (1982).

35A. Bondeson and M. S. Chu, Physics of Plasmas 3, 3013 (1996).

36H. J. de Blank, Transactions of Fusion Science and Technology 53, 122 (2008).

37R. Betti and J. P. Freidberg, Physics of Fluids B 3, 538 (1991).

388, Jardin, Computational Methods in Plasma Physics (CRC Press, 2010).

39Y. Liu, M. S. Chu, W. F. Guo, F. Villone, R. Albanese, G. Ambrosino, M. Baruzzo, T. Bolzonella, I. T. Chapman, A. M. Garofalo, C. G.
Gimblett, R. J. Hastie, T. C. Hender, G. L. Jackson, R. J. La Haye, M. J. Lanctot, Y. In, G. Marchiori, M. Okabayashi, R. Paccagnella,
M. Furno Palumbo, A. Pironti, H. Reimerdes, G. Rubinacci, A. Soppelsa, E. J. Strait, S. Ventre, and D. Yadykin, Plasma Physics and
Controlled Fusion 52, 104002 (2010).

40M. S. Chu and M. Okabayashi, Plasma Physics and Controlled Fusion 52, 123001 (2010).

41T, Antonsen, “Theory of fusion plasmas,” (Editrice Compositori, Bologna, 1987) Chap. Kinetic Energy Principles, pp. 161-183.

42T, Antonsen, B. Lane, and J. Ramos, Physics of Fluids 24, 1465 (1981).

43R. Grimm, J. Greene, and J. Johnson, “Methods in computational physics, vol. 16,” Chap. Computation of the Magnetohydrodynamic
Spectrum in Axisymmetric Toroidal Confinement Systems.

44M. Chance, Physics of Plasmas 4, 2161 (1997).

45, Wesson, Tokamaks (Oxford: Clarendon Press, 2004).

46X, Wang, Effect of Energetic Particles and Plasma Rotation on Ballooning Modes, Ph.D. thesis, Columbia University (1989).

473, A. Sabbagh, S. M. Kaye, J. Menard, F. Paoletti, M. Bell, R. E. Bell, J. M. Bialek, M. Bitter, E. D. Fredrickson, D. A. Gates, A. H.



98

Glasser, H. Kugel, L. L. Lao, B. P. LeBlanc, R. Maingi, R. J. Maqueda, E. Mazzucato, D. Mueller, M. Ono, S. F. Paul, M. Peng, C. H.
Skinner, D. Stutman, G. A. Wurden, W. Zhu, and the NSTX Research Team, Nuclear Fusion 41, 1601 (2001).

48C. Wahlberg, I. T. Chapman, and J. P. Graves, Physics of Plasmas 16, 112512 (2009).

498, Haney and J. Freidberg, Physics of Fluids B 1, 1637 (1989).

50 A. Glasser and M. Chance, Bulletin of the American Physical Society 42, 1848 (1997).

51J. W. Berkery, R. Betti, and S. A. Sabbagh, Physics of Plasmas 18, 072501 (2011).

52]. Graves, I. Chapman, S. Coda, M. Lennholm, M. Albergante, and M. Jucker, Nature Communications 3, 624 (2012).

53R. Betti and S. Cowley, “Kinetic effects on the resistive wall mode,” Tech. Rep. (Institute for Theoretical Physics, U.C. Santa Barbara,
1995).

54R. Betti and J. P. Freidberg, “Destabilization of the internal kink by energetic-circulating ions,” Tech. Rep. (University of Rochester,
1993).

55A. Bondeson and R. Tacono, Physics of Fluids B 1, 1431 (1989).

56W. A. Cooper, J. P. Graves, M. Jucker, and M. Y. Isaev, Physics of Plasmas 13, 092501 (2006).

57M. Jucker, J. P. Graves, G. A. Cooper, and W. A. Cooper, Plasma Physics and Controlled Fusion 50, 065009 (2008).

58D. Liu, W. Heidbrink, M. Podesta, R. Bell, E. Fredrickson, S. Medley, R. Harvey, and E. Ruskov, Plasma Physics and Controlled
Fusion 52, 025006 (2010).

598. Coda, I. Klimanov, S. Albertu, G. Arnoux, P. Blanchard, and A. Fasoli, Plasma Physics and Controlled Fusion 48, B359 (2006).

601. Gradshteyn and I. Ryzhik, Table of Integrals, Series, and Products (Academic Press, 2000).

61G. Matsunaga, N. Aiba, K. Shinohara, Y. Sakamoto, A. Isayama, M. Takechi, T. Suzuki, N. Oyama, N. Asakura, Y. Kamada, and
T. Ozeki, Physical Review Letters 103, 045001 (2009).

62G. Matsunaga, K. Shinohara, N. Aiba, Y. Sakamoto, A. Isayama, N. Asakura, T. Suzuki, M. Takechi, N. Oyama, and H. Urano,
Nuclear Fusion 50, 084003 (2010).

63Y. Liu, Nuclear Fusion 50, 095008 (2010).

64A. Polevoi, H. Shirai, and T. Takizuka, “Benchmarking of the NBI block in ASTRA code versus the OFMC calculations,” Tech. Rep.
(Japan Atomic Energy Research Institute, 1997).

65Y. Liu, “Private communication,” (2010).

66F. Porcelli, Plasma Physics and Controlled Fusion 33, 1601 (1991).

67J. Graves, Physical Review Letters 92, 185003 (2004).

681, T. Chapman, S. D. Pinches, L. C. Appel, R. J. Hastie, T. C. Hender, S. Saarelma, S. E. Sharapov, I. Voisekhovitch, and J. P.
Graves, Physics of Plasmas 14, 070703 (2007).

69N. Gorelenkov, H. Berk, and R. Budny, Nuclear Fusion 45, 226 (2005).

70C. Angioni, A. Pochelon, N. Gorelenkov, K. McClements, O. Sauter, R. Budny, P. de Vries, D. Howell, M. Mantsinen, M. Nave, and
S. Sharapov, Plasma Physics and Controlled Fusion 44, 205 (2002).

"1H. Berk, W. Horton, M. Rosenbluth, and P. Rutherford, Nuclear Fusion 15, 819 (1975).

72M. G. von Hellermann, W. G. F. Core, J. Frieling, L. Horton, R. Konig, W. Mandl, and H. Summers, Plasma Physics and Controlled
Fusion 35, 799 (1993).

73W. Solomon, K. Burrell, R. Andre, L. Baylor, P. Gohil, R. Groebner, C. Holcomb, W. Houlberg, and M. Wade, Physics of Plasmas
13, 056116 (2006).

74R. Bell, R. Andre, S. Kaye, R. Kolesnikovc, B. LeBlanc, G. Rewoldt, W. Wang, and S. Sabbagh, Physics of Plasmas 17, 082507 (2010).

75N. Aiba, J. Shiraishi, and S. Tokuda, Physics of Plasmas 18, 022503 (2011).

76R. Betti, Physics of Plasmas 5, 3615 (1998).

77P. Helander and D. Sigmar, Collisional Transport in Magnetized Plasmas (Cambridge University Press, 2001).

"8M. Beer, Gyrofluids Models of Turbulent Transport in Tokamaks, Ph.D. thesis, Princeton University (1995).

7M. Beer and G. Hammett, Physics of Plasmas 3, 4046 (1996).

80F. Gross and M. Krook, Physical Review 102 (1956).

81T, Stringer and J. Connor, Physics of Fluids 14, 2177 (1971).

82A. H. Boogzer and G. Kuo-Petravic, Physics of Fluids 24, 851 (1981).

83G. Fu, C. Cheng, and K. Wong, Physics of Fluids B 5, 4040 (1993).

84M. Brambilla, Kinetic Theory of Plasma Waves: Homogeneous Plasmas (Oxford University Press, 1998).

85B. B. Kadomtsev and O. P. Pogutse, Soviet Physics JETP 24, 1172 (1967).

86]. W. Berkery, “MDC-2 benchmarking,” Tech. Rep. (Columbia University, 2011).

87M. Rosenbluth and M. L. Sloan, Physics of Fluids 14, 1725 (1971).

88J. Connor, R. Hastie, and T. Martin, Nuclear Fusion 23, 1702 (1983).

89B. Coppi, S. Migliuolo, F. Pegoraro, and F. Porcelli, Physics of Fluids B 2, 927 (1990).

90Y. Wu, C. Cheng, and R. White, Physics of Plasmas 1, 3369 (1994).

91C. Roach, J. Connor, and S. Janjua, Plasma Physics and Controlled Fusion 37, 679 (1995).

92L. Hau and B. Sonnerup, Geophysical Research Letters 20, 1763 (1993).

93R. Prajapati, G. Soni, and R. Chhajlani, Physics of Plasmas 15, 062108 (2008).

94G. F. Chew, M. L. Goldberger, and F. E. Low, Proceedings of the Royal Society of London, Series A 236, 112 (1956).

95V Ilgisonis, Physics of Plasmas 3, 4577 (1996).

961, Grigorev and V. Pastukhov, Plasma Physics Reports 33 (2007).

97D. Gurnett and A.Bhattacharjee, Introduction to Plasma Physics with Space and Laboratory Applications (Cambridge University Press,
2005).

98P, Snyder, G. Hammett, and W. Dorland, Physics of Plasmas 4, 3974 (1997).

99K. M. Ferriere and N. André, Journal of Geophysical Research 107, 1349 (2002).

100H. Hamabata, Journal of Plasma Physics 30, 291 (1983).



