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The Stability of Low-Frequency MHD (Internal Kink and Resistive Wall
Mode) Depends on Kinetic Physics, Equilibrium Flows and Pressure

Anisotropy

The objective of this work is to develop a comprehensive linear
stability theory including:

e Resonant and non-resonant particle contributions.

e Finite-Larmor radius effects at the rational surfaces.

e Finite anisotropy.

Finite equilibrium flow.
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Generalized Collisionless Electromagnetic
Stability Model

Our starting equations are:

(JxB+IxB) - (v.ﬁj)l +iwl =0
Jj=ie

N, = ZN;.

Perpendicular momentum (sum of exact moments of the
Vlasov equation) and quasi-neutrality for a set of three
equations.

The three unknowns that need to be determined are the three
components of the perturbed electric field:

E=inE, xB-Vd.
Notice that E | is the magnetic field line displacement:

ﬁ = V x (éL X B) B s PPPL
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The Vlasov Equation Determines the Perturbed

Distribution Function

The linearized Vlasov equation is used for the perturbed
distribution function:

& Z(RivxB)vyr

Key point: use f to calculate the density N, the mass flux T
and the pressure tensor II but NOT the current:

N= [ d°vf
[ i
T=m / d3v(vf)

M= m/dsv(vvf)

Instead:

J=VxB B reory



The Formulation Is Very General

Very few limitations (or constraints) are used in the
present work, namely:

1. Electron inertia is neglected.
2. Quasi-neutrality is assumed.
3. Reconnecting modes are not included.



Why Not Use the Parallel Component of the
Momentum Equation?

Because it is an identity!
aI;
JxB-— Z(v I — at> 0

l

(3><B+J><l~3)l— 3 (V-ﬁj)L-i-iCOfu_:O

Jj=tie

()] o

This gives 0 = 0 when f from Vlasov’s equation is used to
calculate IT; and I'; into the parallel component of the

momentum equation. B
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Solve the Linearized Vlasov Equation Including
Zeroth and First Order Gyrophase-Dependent

Terms (to Include FLR Effects)

We solve: _ . _
E=inE xB-Vd
ioB=V xE

and .

df _Ze &, .. 8
with
f:f<o-7(ga7#ﬂp¢)a
o= [l for circulating particles,

vy
1
&= 5mjv2 +Zed, Py = Ziey + mjRu,
2

_mwy du
2B dt

= 0 along real particle orbits.
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Solution of the Linearized Vlasov Equation

Without any approximation:

of  of
& ap,

)[é -1

+lmJ(

F=-& Vf—l—Ze C+ <5 V-

M(Eﬁ)
B

M) =—i0€, -v+u (§+ A

B

E'VL>

The difficulty is in calculating the orbit integral 1.
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Use Exact Particle Orbit and Integration by Parts
in Calculating 7

For example:

/g vdt' = /(bxv)xbgldt’ /bxél (v x b)

Particle orbits: v « b= $ ¥
Integration by parts:
~ d i) X &L -V b x gi
/ —_— =
1 /dt{dt< o ) vdt( o

. t £
i ~ bxgiv_/ v-(fiw+v~V)b>;det’
-

FLR term

gyrophase dependent out of integral
need only gyrophase average <>
(electric field is kept in the actual calculation). B



Important Physics Is Given by the Evaluation of
the Orbit Integral.

The general solution of the linearized Vlasov equation including
zeroth and first order gyrophase-dependent terms is written as

P 0 5 J . 1\/[~
F=-& . Vf+%e C—H J(mi_%) [gl V—n]-i-%(él'vu— (é))

= ol bxv, - (b-V)E, +b- (bxv,)-VE]
¢j

dz

1 A = . . 2 z
+4QCJ-[VLXb’vL'V§L+VL(VLXb)'vﬁ]* 2g§gB'VX (J;*)

t 2 2 o .
+/_mdt’{(l)2 U|>K~EL+UZLV'&¢—§;C
: }

FLR effects
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The Perturbed Distribution Function Is Used in
the Stability Analysis

Before calculating pressure tensor and energy principle, it is
convenient to define some quantities:

g ‘ L :  Vig g Zes
S:/wdt/{<2—vl K&L—‘rgv L—FJC

) af 8f
K 2 3 2

2
pK— 3 UL 8f_ 9f>
p; =—im /d —ag 7ap¢ 5
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Mass Flow from the Perturbed Distribution
Function

The perturbed distribution function is used for instance to
calculate the mass flux:

_ 3v — M . _ . 3
Fl—m/fvld v—ml/{lml<w8g 3P, +8 B v) v dv

, : B
= —ip(@—0)§ + 5PV,
where Uj is the equilibrium parallel velocity and

__nmdP,(y,B)
YT Ze dy
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Use f to Compute the Pressure Tensor (does not
yet include FLR)

ﬁ = m/wfd3v:ﬁf +ﬁ@ —|—ﬁK +ﬁFLR
I, =bb[-&, -Vp,— (p|—p.)(V-& +x-&))]

HT by [-& Vo, + BV &, +x ) (PP

p|— )
+(B +B b) ( B
~ ~ ~ <
[, =—Ze(®d+E&, -V&u)N 1
T =pEbb+ pK(T — bb
K =P +P( )
I FLR — to be calculated
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Energy Principle (flow not yet included)

SW — /ds {l (J><B+J><B) Y& -v. H}
j=ie
:5‘/\/'/~+8W9+5WK+6WFLR
/d3 |BL‘2+§LXBL bJH+BZIV §L+K &L‘ :|

—2Bdgpo ‘V'éj_ +K'§J_' +2(EJ_ 'VPO)K'EJ_}

self-adjoint

2N 5 N
5Wa‘7:_% ‘/dBI(%?MKP) [C:&>+€L'V¢O]

af; 8f~)(~d§*>
3 3 _ Jj
5WK—IE mj/d /d w8£ 8p¢ di

OWgr — to be calculated B




Resistive Wall Mode Dispersion Relation

The resistive wall mode dispersion relation is written as:

= OWr 8 Wetcuuum) + 8Wo 1+ S Wi + 6 Wrir
: (5WF+6Wl?acuum)+5W¢+5WK+5WFLR.

This requires the solution of quasi-neutrality to find 5 :

N. = ZN;
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Conclusions.

e Once completed, this calculation will represent a very
comprehensive formulation for linear stability.

e Equilibrium flow effects and FLR effects are being
calculated.

e The calculation of the perturbed electric potential ¢ (from
quasi-neutrality) requires an appropriate numerical
algorithm.
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