High-k Scattering Development 2016

University of California, Davis

R. Barchfeld, E. Scott, P. Riemenscheider, C.W. Domier, N.C. Luhmann Jr.

Princeton Plasma Physics Laboratory R. Kaita, Y. Ren

Friday, July 8th, 2016

NSTX-U High-k Scattering System

High-k Poloidal Scattering Overview

- Original design by Yang Ren employed large spherical turning mirror to deflect and focus scattered beams on to multi-channel receiver array
- Individual channels correspond to different scattering angles (both poloidal and toroidal), all aimed at the same physical location in the plasma

High-k Scattering Physics Goals

Scattering region to be translatable:

- ±15 cm vertically, i.e. above/below plasma midplane
- ±15 cm toroidally, so as to access a limited range of radial wavenumbers
- translatable radially from r/a = 0.1 to pedestal region (r/a ~ 0.99): Δr ~ 50 cm

High-k Optics Constraints on Bay L

· Upper PF4 Coil

Fusion Product Detector (system not shown – attaches to gate valve)

Aperture: 12.25" x 4.5625" (311 mm x 116 mm)

Window: 14.25" x 6.563"x 0.50" (362 mm x 167 mm x 12.7 mm)

Thomson Scattering (TS)
Beam Dump

TS Support Flange

Lower PF4 Coil

High-k Receiver

- The high-k launch beam is passed through the vacuum vessel from Bay G towards Bay L
- The scattered waves pass through a large exit window on Bay L, are collected and then focused down to a multi-channel receiver
- Receiver design based on employing four 4x1 subharmonic mixer arrays, arranged as 8 poloidal/vertical channels by 2 toroidal/horizontal channels
- Initial implementation will employ one 4x1 SHM array, with a second array to be purchased in 2017 to upgrade system to an 8x1 configuration
- Two optical designs (A and B) have been drawn up

High-k Optics Design A (MIR Compatible)

Advantage:

 Microwave Imaging Reflectometer (MIR) polarizing beam splitter to sit between large lens and window, reflecting the MIR beam downwards

- Interference with the Fusion Product Detector (FPD) at many scattering angles and radial positions
- Thick lens (12 cm at center) results in higher attenuation (~0.5 dB/cm loss)

High-k Receiver Design B (No MIR)

Advantages:

- Largest range of imaging
- Thinner lens (6.5 cm at center) results in reduced absorption (almost 3 dB improvement in signal levels)

Disadvantage:

 Elimination of gap between window and high-k optics means that MIR could not share the same Bay L window

Development Concerns

High-k Receiver Mechanical Fit Concerns

Desired Range

Design A
Design B, Zoom In

Design B, Zoom Out

Current Fit:

Design B allows for full range when zoomed in, decreases as zoomed out, mostly because of structural channel.

Design A is severely impacted by FPD.

Potential Modifications:

With a minimal modification to the structural member the zoom out of B would double its range. With that mod and without the FPD all 3 would have full range.

High-k Scattering Goals 2016

- Fabricate/test launch optics
- Complete design for receiver optics
- Fabricate/test receiver optics
- Fabricate/test optic remote control
- Test receiver reference mixer
- Test receiver mixer array and receiver electronics
- Compile, test, and calibrate entire scattering system
- Ship completed system to PPPL
- Install components on NSTX-U (laser system, waveguide, launch optics, receiver optics, receiver electronics)
- Test and characterize completed system at PPPL

It has been suggested to move some of the development to PPPL and the Pros and Cons should be discussed

High-k Development Location Options

- Continue development at UC Davis
 - Pros
 - New laser laboratory ready
 - Well stocked with test equipment and microwave components
 - Direct contact with UCD engineering team (especially for current work with electronics and microwave components)
 - Cons
 - No direct access to PPPL engineers
 - Delays in communication with PPPL
- Relocate development to PPPL
 - Pros
 - Greater insight to PPPL procedures and design constraints
 - Cons
 - Need to establish laboratory suitable for lasers and microwaves
 - Shipping and safety training will delay progress
 - Remote contact with UC Davis will likely lead to additional delays

High-k Laboratory Requirements

- Room certified for class IV lasers, microwave, and electronics (approx. 300+ sq. ft.)
 - Safety signs, lights, curtains, etc... as required
- Minimum 10' x 4' optical table for laser operations
- Additional 4' x 4' (or larger) optical table for FIR testing, 8' x 4' table for laser maintenance/repairs
- Electrical power needs:
 - One 208 VAC 30 A (power supply), two 208 VAC 20 A (power supply and water chiller)
 - Two 120 VAC 20 A (dry scroll and oil vacuum pumps)
 - Sixteen standard 120 VAC 15 A outlets (for low amperage equipment, expansion with power strips is OK)
- Access to water for laser cooling and dirty water disposal
- Gas cylinder rack (200 cu.ft. bottle)
- Toxic gas exhaust system for CO₂ laser, formic acid laser, and possibly methanol laser (if FIReTIP laser maintenance can be done in laboratory at PPPL)
- Storage cabinets for test equipment and optics, space for laser optic parts chest of drawers
- Desk and internet connection
- Laboratory must be on-site, otherwise no advantages can be realized
- Additional requirements:
 - Flexible access to all PPPL facilities to work around any interfering schedules
 - Machine shop access
 - Access to PPPL engineers for quicker resolution of minor problems
 - Ability to borrow test equipment/ tools as needed (or at least short term usage while waiting for shipments from UC Davis)

High-k Development Concerns

Slow response time for feedback

 We appreciate how busy everyone is; however, often times we wait several weeks on feedback to designs, slowing the design process

NSTX-U run schedule

The proposed NSTX-U run schedule for Fall and Winter (running ~3 weeks/ month)
 will severely impact High-k and FIReTIP installation with limited test cell access.

Sources of delays

 The time estimates provided assume uninterrupted work. Purchasing, training, shipping, and other procedures necessarily slow progress.

• High-k windows

 Purchasing, fabrication, and installation of the port windows is likely to take several months. If they are not installed in time, it will prevent finalizing the High-k installation.

Interference from fusion products detector

 Spatial constraints around Bay L are severely limiting the High-k receiver and MIR designs. The fusion products detector is the primary problem.

Discussion

- High-k receiver design
 - Fusion products interference?
 - Inclusion of MIR compatible design?
 - Design A is compatible with MIR but interferes strongly with FPD
 - Design B has slight interference with FPD, but excludes MIR
- High-k development
 - Continue at UC Davis?
 - Move to PPPL?

End of Presentation, Thank you!

Backup Slides

Backup Slides

High-k Receiver Design #1 (Old)

Design #1: Spherical mirror placed close to the Bay L window, with multi-channel receiver and additional optics located below

Advantage:

Extremely compact geometry

- Entire system must be translated/rotated as a single unit in order to keep all channels focused at the same point in the plasma
- Insufficient space below mirror to accommodate full radial translation range

High-k Receiver Design #2 (Old)

Design #2: Large turning mirror placed far from the Bay L window, with multichannel receiver and additional optics located below the mirror

Advantage:

 Turning mirror fixed in place and rotates in 2-D, while the receiver+optics placed below the turning mirror needs only be translated axially in 1-D

- Mirror has interference with TS support at some scattering/positions
- Optics extend far below the turning mirror; interference with midplane flooring not shown in drawings available to UC Davis

High-k Receiver Design #3 (Old)

Design #3: Lens-based system, extending straight out from window Advantage:

- Much smaller footprint than Design #2
- Entire system is translated/rotated as a single unit

- Focusing using HDPE lenses translates to signal loss (HDPE loss is ~0.5 dB/cm)
- Large focusing lens has interference with TS support at some scattering angles and radial positions (particularly as one approaches the pedestal region)
- Large focusing lens has significant interference with the Fusion Product Detector (FPD) at most scattering angles and radial positions