

TGLF-GYRO comparisons for NSTX L-mode

T&T TSG group meeting

December 7, 2017

Overview

From 2013:

- Initial linear TGLF-GYRO comparisons based on NSTX Lmode 141716 (Ren NF 2013)
- Definition of "STL-STD" parameters
- Initial nonlinear TGLF-GYRO comparisons

<u>2017:</u>

Beginning of aspect ratio comparison to test NL saturation & ZF dynamics

NSTX test cases

- In NSTX H-mode discharges, any and all of the following micro-instabilities can be unstable at different regions, simultaneously: ITG, TEM, ETG, KBM, microtearing → challenges any reduced model
- To start, focus on cases expected to be dominated mostly by one instability [Ref. 1] L-mode discharge (ITG) – NSTX 141761
 I_p=0.9 MA, B_T=0.55 T, P_{NBI}=2 MW

[Ref. 2] "Low" beta H-mode discharge (ETG) – NSTX 141031/141040 $I_p=$, $B_T=$, $P_{NBI}=3$ MW [Ref. 3] "High" beta H-mode discharge (microtearing) – NSTX 120968/138564 $I_p=0.7$ MA, $B_T=0.35$ T, $P_{NBI}=4$ MW [Ref. 4] NSTX-U scenario – 142301 (?) $I_p=$, $B_T=$, $P_{NBI}=6$ MW

[1] Y. Ren et al., IAEA (2012), Nucl. Fusion (2013)

[2] Y. Ren et al., Phys. Plasmas (2012)[3] W. Guttenfelder et al., Phys. Rev. Lett. (2011)[4] S.P. Gerhardt et al., Nucl. Fusion (2012)

NSTX L-mode at relatively low beta

- Shaping not very extreme (local surface shape κ =1.5, δ =0.1)
- Biggest difference to DIII-D is aspect ratio (R/a<1.5) and higher v_{ei} -a/c_s~0.4-2.9

r/a	q	S	T _e /T _i	a/L _{Ti}	a/L _{Te}	a/L _{ne}	$\mathbf{Z}_{\mathrm{eff}}$	v _{ei}	β _e (%)	$\gamma_{\rm E}$	$\gamma_{\rm p}$	Ma	α_{MHD}
0.6	1.39	0.89	0.89	4.68	5.17	3.47	1.19	0.39	0.586	0.77	2.57	0.47	0.46
0.66	1.55	1.45	0.90	6.82	5.98	3.03	1.19	0.61	0.312	0.59	2.00	0.40	0.31
0.71	1.77	2.30	0.94	6.83	6.35	1.60	1.15	0.99	0.184	0.35	1.22	0.37	0.20
0.76	2.15	3.49	0.95	7.00	6.94	1.63	1.15	1.75	0.104	0.24	0.95	0.38	0.16
0.8	2.64	4.65	0.96	8.46	7.94	2.55	1.15	2.86	0.060	0.25	1.16	0.39	0.15

r/a	R/a	Z/a	к	δ	ζ	dR/dr	dZ/dr	S _κ	s _δ	\mathbf{s}_{ζ}
0.6	1.449	0.008	1.542	0.090	-0.013	-0.267	-0.001	-0.023	0.036	-0.027
0.66	1.432	0.008	1.540	0.094	-0.015	-0.286	-0.001	0.002	0.049	-0.029
0.71	1.417	0.008	1.542	0.099	-0.017	-0.312	-0.002	0.029	0.078	-0.025
0.76	1.401	0.008	1.547	0.106	-0.019	-0.351	-0.002	0.073	0.140	-0.017
0.8	1.386	0.008	1.555	0.115	-0.019	-0.392	-0.003	0.129	0.229	-0.002

Using identical model choices with collisions (v_{ei} =0.99 c_s/a) TGLF predicts growth rates ~35% larger than GYRO

- Miller geometry, ES (EM effects negligible in this case), MHD approx. ($\nabla B/B=\kappa$)
- Real frequencies very close
- Discrepancy is reduced to ~15% in the collisionless limit, or with adiabatic electrons

- Using GYRO eigenvalue solver [Belli]
- Have verified numerical convergence for GYRO with energy grid ($8\rightarrow 12$), radial grid ($4\rightarrow 8$), parallel grid ($14\rightarrow 22$), radial basis function order ($3\rightarrow 5$)

Similar agreement/discrepancy found across r/a=0.5-0.8

• Testing both with and without collisions ($k_{\theta}\rho_s=0.4$)

Comparable agreement for ETG growth rates

- This is collisionless, collisions make little difference
- High $k_{\theta}\rho_s$ GYRO simulations require more energy grid points (8 \rightarrow 12)

Testing sensitivity to collisionality

- GS2 agrees pretty well with GYRO (GS2 not using $\nabla B/B=\kappa$, but ~negligible effect here)
- Reducing THETA_TRAPPED (α_{LA} in the paper) from 0.7 \rightarrow 0.52 improves agreement
- TGLF predicts a weaker tearing parity (ES) mode present over entire range

Many other scans were done (gradients, beta, geometry) with ~comparable results (see 2013 slides)

"STL-STD" base case established to ultimately include linear & nonlinear results in TGLF calibration

STL-STD base case established based on NSTX L-mode 141716, r/a=0.75 (from July, 2013)

For the STL-STD base case, we decided to also start with:

- Electrostatic
- Deuterium + electrons only
- $\nabla B/B = \kappa$ (at finite P'_{eq})

	r/a	q	S	T_e/T_i	a/L _{Ti}	a/L _{Te}	a/L _n	Z _{eff}	v _{ei}	β_{e} (%)	$\gamma_{\rm E}$	γ_p	Ma	$ ho_*$
exp.	0.75	2.06	3.23	0.95	6.84	6.79	1.53	1.15	1.56	0.12	0.25	-0.95	-0.38	0.0031
STL	0.75	2	3	1	6	6	2	1	1.0	0.1	0	0	0	→0

	r/a	R/a	Z/a	к	δ	ζ	dR/dr	dZ/dr	s _ĸ	\mathbf{s}_{δ}	\mathbf{s}_{ζ}
exp.	0.75	1.404	0.008	1.546	0.104	-0.019	-0.34	-0.002	0.063	0.124	-0.019
STL	0.75	1.4	0	1.5	0.1	0	-0.3	0	0.1	0.1	0

Small change stability using STL-STD (rounded parameters) compared to actual experimental values

- (black solid) experimental parameters with general numerical equilibrium, fully EM and carbon
- (black dashed) electrostatic and deuterium only small change
- (red) STL-STD parameters pretty close to experimental case
- (blue) STL-STD but with no collisions

Linear spectra

Nonlinear GYRO simulations run both with & without collisions (without E×B shear) – very large transport in GB units

v _{ei}	L _x (ρ _s)	L _y (ρ _s)	nx	ny	∆t (c _s /a)	t _{max} (c _s /a)	Q _i (Q _{GB})	Q _e (Q _{GB})	Q _e (k _v >1) %	k _y peak
0	126	126	128	32	0.002	~700	1367	989	4	0.1
0	126	126	192	32	0.002	~420	1295	893	3	0.1
1	126	126	128	32	0.005	~750	657	356	2	0.35
	120	120	120		0.000				_	0.00
1	126	126	192	32	0.003	~630	623	330	6	0.2

TGLF heat fluxes ~3× lower than GYRO

• Sign of particle flux opposite for $v_e=0$

Comparison with TGLF flux spectra

Want to continue with linear & nonlinear scans using "STL-STD" parameters

One obvious scan is testing linear stability & NL saturation with aspect ratio...

Aspect ratio scan by varying r/a using 'R' normalization (both collisional and collisionless)

- Growth rates become stabilized at high enough r/R using Miller geometry
- Hit a numerical resolution problem in GYRO with the collisional case at increasing r/R
- Repeated scans with CGYRO (generally good agreement but have not done any careful resolution tests)

- TGYRO & TRANSP predictions of Te, Ti for this case
 I tried using OMFIT, TGYRO_GACODE module -- hit some snags
- TGLF-GYRO linear ky scan at different r/R
- Overlay TGLF-GYRO eigenfunctions, changes with geometry metrics
- Q: Can we optimize TGLF linear model choices to obtain better agreement
- GYRO nonlinear scan with r/R

Eigenfunctions (v=0) broaden with increasing r/R

- \Box θ -width of bad-curvature drive stays broad up to r/R=0.6, then shrinks
- Low k²_⊥ (~k²_x) region widens in θ with increasing r/R
- Note double-valued |B| at increased r/R

Broad spectrum of ETG modes are also unstable

- Ion scale growth rates are larger than local E×B shearing rate for collisional and collisionless cases
- $(\gamma/k_{\theta})_{\text{low-k}} > (\gamma/k_{\theta})_{\text{high-k}}$ for both v, v=0 cases

Generate broad spectrum stability plot (γ/k_{θ}) for multiple radii

Transforming from 'a' normalization to 'R' normalization for STL-STD parameters

• $k_{\theta}\rho_s=0.3$ (ES; D+e; $\nabla B/B=\kappa$: GEO_GRADBCURV_FLAG=1)

<u>a norm</u>

- R/a=1.4
- r/a=0.75
- a/LT=6
- a/Ln=2
- $\Box v_{ei}a/c_s=1$
- $(\omega, \gamma) = (-0.433, 0.559) c_s/a$
- $(\omega, \gamma) = (-0.606, 0.783) c_s/R$
- Collisional cases above

<u>R norm</u>

- R/a=1
- r/a=0.5357
- a/LT=8.4
- a/Ln=2.8
- \Box v_{ei}a/c_s=1.4
- $(\omega,\gamma) = (-0.605, 0.784) c_s/a$
- $(\omega,\gamma) = (-0.605, 0.784) c_s/R$

Older work from June 2017

GA-STD (reg02) case with s- α geometry

GA-STD (reg02) case

- Started with GYRO 'reg02' regression test (kinetic electrons)
- q=2, s=1, κ=1, δ=0

<u>a norm</u>

- R/a=3
- r/a=0.5
- a/LT=3
- a/Ln=1
- $(\omega,\gamma) = (-0.317, 0.240) c_s/a$
- $(\omega, \gamma) = (-0.951, 0.720) c_s/R$

<u>R norm</u>

- R/a=1
- r/a=0.1667
- a/LT=9
- a/Ln=3
- $(\omega,\gamma) = (-0.952, 0.720) c_s/a$
- (ω,γ) = (-0.952,0.720) c_s/R

r/R scan using reg02 (GA-STD), R=a

GA-STD (reg02) case with Miller geometry

(Dec. 7, 2017)

GA-STD-M case, reg02 with Miller geometry (RADIAL_PROFILE_METHOD=5)

- Started with GYRO 'reg02' regression test (kinetic electrons)
- Now actually using Miller geometry
- q=2, s=1, κ=1, δ=0

<u>a norm</u>

- R/a=3
- r/a=0.5
- a/LT=3
- a/Ln=1
- $(\omega, \gamma) = (-0.216, 0.324) c_s/a$
- $(\omega,\gamma) = (-0.649, 0.973) c_s/R$

<u>R norm</u>

- R/a=1
- r/a=0.1667
- a/LT=9
- a/Ln=3
- $(\omega, \gamma) = (-0.650, 0.973) c_s/a$
- (ω,γ) = (-0.650,0.973) c_s/R

Growth rates become stabilized at high enough r/R using Miller geometry

0

-0.2

-0.4

- Miller solution approaches s- α as r/R \rightarrow 0
- Think there must be two distinct roots looking at change in ω_r & eigenfunctions at r/R=0.7

Using Miller geometry, see a dramatic change in geometry metrics at increasing r/R

- Large increase in trapped particle fraction
- Reduced "bad" curvature region at high r/R
 - $\Box \kappa \& \nabla B/B \text{ identical } (\beta'=0)$
 - Toroidal drift terms are normalized in the way of GS2
- k_{\perp}^2 becomes very large at large r/R

