Goal: Identify a standard ST L-mode set of parameters to validate TGLF with linear & nonlinear GYRO

- Many tests already done for:
 - NSTX 141716A48, t=0.448 s (Ren et al., Nucl. Fusion 2013)
 - NSTX 112996A06, t=0.243 s (Staebler et al., IAEA 2008; Stutman, PoP 2006)
- Want to emphasize high trapped fraction & collisionality at low aspect ratio

Profiles from two NSTX L-modes

- Around r/a=0.7-0.8
 - $n_e \approx n_i$ (relatively pure)
 - $T_{e}/T_{i}=1-1.5$
 - $a/L_n = 1-3$
 - $a/L_{T}=4-8$
 - β_e =0.1% (EM weak)
 - $v_{ei} = 0.5 2 c_s/a$
 - q=2-3
 - s=2-4
 - R/a≈1.4 (r/R≈0.5)
 - κ≈1.5
 - δ≈0.1

Establishing STL-STD base case around 141716, r/a=0.75

• Creating STL-STD by mostly rounding numbers

	r/a	q	S	T _e /T _i	a/L _{Ti}	a/L _{Te}	a/L _n	Z _{eff}	ν_{ei}	β _e (%)	$\gamma_{\rm E}$	γ_p	Ma	ρ*
exp.	0.75	2.06	3.23	0.95	6.84	6.79	1.53	1.15	1.56	0.12	0.25	-0.95	-0.38	0.0031
STL	0.75	2	3	1	6	6	2	1	1.0	0.1	0	0	0	→ 0

	r/a	R/a	Z/a	κ	δ	ζ	dR/dr	dZ/dr	S _κ	s_{δ}	\mathbf{s}_{ζ}
exp.	0.75	1.404	0.008	1.546	0.104	-0.019	-0.34	-0.002	0.063	0.124	-0.019
STL	0.75	1.4	0	1.5	0.1	0	-0.3	0	0.1	0.1	0

Linear runs – comparing experimental vs STL-STD

() NSTX

Establish convergence for STL-STD (both $v_e=0 \& 1$)

- Baseline resolution for $v_{ei}=0 \& 1.0 c_s/a$: - $L_x \times L_y=126 \times 126 \rho_s$, $n_x \times n_y=128 \times 32$, $n_E \times n_\lambda=8 \times 12$, $n_\theta=14(\times 2)$
- At early times small wings were developing at high (k_x,k_y) so I also started a case with higher radial resolution (n_x=192), but ultimately didn't matter much
- Collisionless case peaks at very low $k_v=0.1$ (spectra on following slides)
 - Perhaps even bigger box would be in order? (Ly=126, Δk_y =0.05 corresponds to Δn =6 for this case)

ν _{ei}	L _x (rs)	L _y (rs)	nx	ny	dt (c _s /a)	t _{max} (c _s /a)	Q _i (Q _{GB})	Q _e (Q _{GB})	Q _e (k _y >1) %	k _y peak
0	126	126	128	32	0.002	~700	1367	989	4	0.1
0	126	126	192	32	0.002	~420	1295	893	3	0.1
1	126	126	128	32	0.005	~750	657	356	2	0.35
1	126	126	192	32	0.003	~630	623	330	6	0.2

Time series

Clear peaks in transport spectra (low $k_v=0.1$ peak for $v_{ei}=0$)

() NSTX

Nonlinear TGLF tests for NSTX

(2013)

Comparison of total fluxes with TGLF

- TGLF heat fluxes ~3× lower than GYRO
- Sign of particle flux opposite for $v_e=0$

Comparison with TGLF flux spectra

