# To validate TGLF against GYRO, need to ensure identical model assumptions and inputs

- For comprehensive gyrokinetic analysis, we usually run GYRO with:
  - Profiles from TRANSP Plasma State files, three species (D,C,e), electron collisions (pitch angle scattering), general numerical equilibrium (from EFIT), fully EM (A<sub>||</sub>, B<sub>||</sub>), no MHD approximation (finite ∇P<sub>eq</sub>, ∇B/B ≠ κ)
  - Typically ignore toroidal flow for linear runs (Ma= $\gamma_p = \gamma_E = 0$ ) unless investigating quasi-linear momentum transport
- The TGLF default is slightly different:
  - Miller geometry, EM with  $A_{\parallel}$  only, MHD approximation (finite  $\nabla P_{eq}$  but  $\nabla B/B=\kappa$ )
- To ensure identical model assumptions we have used TGLF default model for GYRO as well
  - Also need to ensure same  $\nabla P_{eq}$  is used in both (typically sum of thermal species only, but can also include contribution from fast ion/beam species)
- Have double checked out.gyro.run and out.tglf.localdump to verify identical input parameters

### **NSTX test cases**

- In NSTX H-mode discharges, any and all of the following micro-instabilities can be unstable at different regions, simultaneously: ITG, TEM, ETG, KBM, microtearing
   → challenges any reduced model
- To start, focus on cases expected to be dominated mostly by one instability [Ref. 1] L-mode discharge (ITG) – NSTX 141761 I<sub>p</sub>=0.9 MA, B<sub>T</sub>=0.55 T, P<sub>NBI</sub>=2 MW
  [Ref. 2] "Low" beta H-mode discharge (ETG) – NSTX 141031/141040 I<sub>p</sub>=, B<sub>T</sub>= , P<sub>NBI</sub>=3 MW
  [Ref. 3] "High" beta H-mode discharge (microtearing) – NSTX 120968/138564 I<sub>p</sub>=0.7 MA, B<sub>T</sub>=0.35 T , P<sub>NBI</sub>=4 MW
  [Ref. 4] NSTX-U scenario – 142301 (?) I<sub>p</sub>=, B<sub>T</sub>= , P<sub>NBI</sub>=6 MW

#### [1] Y. Ren et al., IAEA (2012), Nucl. Fusion (2013)

[2] Y. Ren et al., Phys. Plasmas (2012)[3] W. Guttenfelder et al., Phys. Rev. Lett. (2011)[4] S.P. Gerhardt et al., Nucl. Fusion (2012)

### **NSTX L-mode at relatively low beta**

- Shaping not very extreme (local surface shape  $\kappa$ =1.5,  $\delta$ =0.1)
- Biggest difference to DIII-D is aspect ratio (R/a<1.5) and higher  $v_{ei}$ ·a/c<sub>s</sub>~0.4-2.9

| r/a  | q    | S    | T <sub>e</sub> /T <sub>i</sub> | a/L <sub>Ti</sub> | a/L <sub>Te</sub> | a/L <sub>ne</sub> | Z <sub>eff</sub> | ν <sub>ei</sub> | β <sub>e</sub><br>(%) | $\gamma_{\rm E}$ | $\gamma_p$ | Ma   | $\alpha_{\rm MHD}$ |
|------|------|------|--------------------------------|-------------------|-------------------|-------------------|------------------|-----------------|-----------------------|------------------|------------|------|--------------------|
| 0.6  | 1.39 | 0.89 | 0.89                           | 4.68              | 5.17              | 3.47              | 1.19             | 0.39            | 0.586                 | 0.77             | 2.57       | 0.47 | 0.46               |
| 0.66 | 1.55 | 1.45 | 0.90                           | 6.82              | 5.98              | 3.03              | 1.19             | 0.61            | 0.312                 | 0.59             | 2.00       | 0.40 | 0.31               |
| 0.71 | 1.77 | 2.30 | 0.94                           | 6.83              | 6.35              | 1.60              | 1.15             | 0.99            | 0.184                 | 0.35             | 1.22       | 0.37 | 0.20               |
| 0.76 | 2.15 | 3.49 | 0.95                           | 7.00              | 6.94              | 1.63              | 1.15             | 1.75            | 0.104                 | 0.24             | 0.95       | 0.38 | 0.16               |
| 0.8  | 2.64 | 4.65 | 0.96                           | 8.46              | 7.94              | 2.55              | 1.15             | 2.86            | 0.060                 | 0.25             | 1.16       | 0.39 | 0.15               |

| r/a  | R/a   | Z/a   | к     | δ     | ζ      | dR/dr  | dZ/dr  | s <sub>k</sub> | s <sub>δ</sub> | $\mathbf{s}_{\zeta}$ |
|------|-------|-------|-------|-------|--------|--------|--------|----------------|----------------|----------------------|
| 0.6  | 1.449 | 0.008 | 1.542 | 0.090 | -0.013 | -0.267 | -0.001 | -0.023         | 0.036          | -0.027               |
| 0.66 | 1.432 | 0.008 | 1.540 | 0.094 | -0.015 | -0.286 | -0.001 | 0.002          | 0.049          | -0.029               |
| 0.71 | 1.417 | 0.008 | 1.542 | 0.099 | -0.017 | -0.312 | -0.002 | 0.029          | 0.078          | -0.025               |
| 0.76 | 1.401 | 0.008 | 1.547 | 0.106 | -0.019 | -0.351 | -0.002 | 0.073          | 0.140          | -0.017               |
| 0.8  | 1.386 | 0.008 | 1.555 | 0.115 | -0.019 | -0.392 | -0.003 | 0.129          | 0.229          | -0.002               |



# Using identical models with collisions ( $v_{ei}$ =0.99 c<sub>s</sub>/a) TGLF predicts growth rates ~35% larger than GYRO

- Miller, ES (EM effects negligible in this case), MHD approx. ( $\nabla B/B=\kappa$ )
- Real frequencies very close
- Discrepancy is reduced to ~15% in the collisionless limit, or with adiabatic electrons



- Using GYRO eigenvalue solver [Belli]
- Have verified numerical convergence for GYRO with energy grid ( $8\rightarrow 12$ ), radial grid ( $4\rightarrow 8$ ), parallel grid ( $14\rightarrow 22$ ), radial basis function order ( $3\rightarrow 5$ )

## Similar agreement/discrepancy found across r/a=0.5-0.8

• Testing both with and without collisions ( $k_{\theta}\rho_s=0.4$ )





## **Comparable agreement for ETG growth rates**

- This is collisionless, collisions make little difference
- High  $k_{\theta}\rho_s$  GYRO simulations require more energy grid points (8 $\rightarrow$ 12)



## **Testing sensitivity to collisionality**

- GS2 agrees pretty well with GYRO (GS2 not using  $\nabla B/B=\kappa$ , but ~negligible effect here)
- Reducing THETA\_TRAPPED ( $\alpha_{LA}$  in the paper) from 0.7 $\rightarrow$ 0.52 improves agreement
- TGLF predicts a weaker tearing parity (ES) mode present over entire range



### Aspect ratio doesn't matter too much

• Using Miller



## Ion temperature gradient scan (R/L<sub>Td</sub>=R/L<sub>Tc</sub>)

- Threshold for strongest mode appears to be similar
- GYRO finds second root from  $a/L_{Ti} >= 0$
- Two weaker TGLF roots are ES-tearing



### **Ion temperature gradient scan – nbasis = 16**

- Growth rates are larger with more basis functions
- Instead of two distinct roots, fastest growing modes at low/high a/L<sub>Ti</sub> look like one smoothly varying root



## **TGLF eigenfunction width is pretty close using nbasis=4**

- Using nbasis=16, TGLF eigenfunctions are narrower
- Collisions make very little difference in eigenfunctions





#### **Electron temperature gradient scan**

• No threshold in a/L<sub>Te</sub>





## **Density gradient scan**

• Weak dependence  $(a/L_{ne}=a/L_{nd}=a/L_{nc}$  for TGLF)



## Beta scan shows negligible dependence around experimental value

- At higher  $\beta_e$  approaching H-mode values, GYRO shows "hybrid-KBM" behavior [Belli, PoP (2010); Guttenfelder, IAEA (2012)]
  - ITG growth rate *increases* with  $\beta_e$ , slowly transitions into KBM mode (not two distinct roots), phasing of Re[A<sub>II</sub>]/Im[A<sub>II</sub>] transitions at the same point
- TGLF shows two distinct roots, KBM threshold much higher this seems weird
  - The GYRO transition point is around  $\alpha_{MHD,unit}$ =0.8, typical of what I've seen in other NSTX cases
- I think both cases are using the same fixed pressure gradient in equilibrium





# r/a scan using Miller inputs (all other parameters constant) collisionless (v<sub>ei</sub>=0)

• Reducing THETA\_TRAPPED ( $\alpha_{LA}$  in the paper) from 0.7 $\rightarrow$ 0.52 improves agreement for larger trapped particle fraction (r/a)





## r/a scan using Miller inputs (all other parameters constant) with collisions ( $v_{ei}$ =0.99 c<sub>s</sub>/a)

• Reducing THETA\_TRAPPED ( $\alpha_{LA}$  in the paper) from 0.7 $\rightarrow$ 0.52 improves agreement for larger trapped particle fraction (r/a)





## 112996A06, t=0.243 s k<sub>θ</sub>ρ<sub>s</sub> scan (r/a=0.8)

- L-mode case from Stutman, PoP (2006) & Staebler, IAEA (2008)
- Both GYRO and TGLF using Miller ( $\nabla B = \kappa$ ), EM ( $\phi$ , A<sub>||</sub>)
- With collisions, comparable discrepancy as previous case
- Good agreement in growth rate without collisions
- (lowest  $k_{\theta}\rho_s$  dot in GYRO-IVP run is microtearing)



## 112996A06, t=0.243 s r/a scan (k<sub>θ</sub>ρ<sub>s</sub>=0.3)



**()** NSTX

## 112996A06, t=0.243 s $v_e \text{ scan (r/a=0.8, k_{\theta}\rho_s=0.3)}$



Profiles of relevant parameters for both L-mode shots (141716, 112996)

• For 112996:

 $n_e$  ,  $v_e$ ,  $\beta_e$  a little lower T<sub>e</sub>/T<sub>i</sub>~1.5 weaker a/L<sub>Te</sub> slightly higher q



**()** NSTX



## Comparing geometry metrics for dR/dr=-0.28 & 0

 Normalizing B<sub>unit</sub> is different for each case

- Curvature drift coefficient is normalized in same way as GS2
  - Broader region of bad curvature with dR/dr=0

• Only showing  $k_{\perp}^2$  (and  $\omega_{\kappa}$  above) terms that are independent of  $\theta_0$ 







#### **Overview**

- Motivation
- TGLF standalone linear tests
- TGLF standalone transport tests
- TGYRO/TGLF/NEO profile predictions



## **Motivation**

- Desire predictive capability for spherical tokamaks (STs) to help develop fully non-inductive discharges for NSTX-Upgrade and next-generation devices: CTF, FNSF, Pilot Plant, etc...
- Non-linear gyrokinetic simulations are expensive → develop reduced transport models that are much faster to evaluate in integrated simulations
- TGLF is one such <u>physics-based</u> model which is capable of including most effects expected to be important: general geometry, collisions, electromagnetic effects, flow and flow shear, multi-species
  - Does not include non-local effects at large  $\rho_*=\rho_s/a$
- $\Rightarrow$  Limited tests of TGLF for realistic ST parameters



## **TGYRO, TGLF, NEO used for modeling**

#### <u>TGYRO [1]</u>

 Transport solver that takes as input TRANSP-calculated sources (P<sub>NBI</sub>, dW/dt, S<sub>particle</sub>, ...) and equilibrium → predicts profiles (Ti, Te, ne, ...) using choice of transport models (TGLF+NEO, TGLF+Chang-Hinton, GYRO+NEO, ...)

#### <u>TGLF</u> [2]

- Fluid moments of *linear* gyrokinetic equation with closures chosen to best match a database of ~1800 linear gyrokinetic simulations
- Predicts transport using a quasi-linear + mixing length model, with coefficients tuned to best match ~100 non-linear gyrokinetic simulations (no empirical tuning, only <u>theory based</u>)
- Gyrokinetic simulations for validation are based on conventional aspect ratio parameters

- Limited testing using realistic ST parameters<sup>4</sup>

#### <u>NEO</u> [3]

- Drift kinetic solution (...) of neoclassical transport, allowing for multiple species, toroidal flow (poloidal asymmetry), and various collision operator models
- For cases shown here, Chang-Hinton used very close to DKE solution
  - <sup>1</sup> J. Candy et al., Phys. Plasmas **16**, 060704 (2009).
  - <sup>2</sup> G.M. Staebler et al., Phys. Plasmas 14, 055909 (2007); Phys. Plasmas 17, 122309 (2010).
  - <sup>3</sup> E.A. Belli & J. Candy, Plasma Phys. Control. Fusion **50**, 095010 (2008).
  - <sup>4</sup>G.M. Staebler et al., IAEA (2008).



# NSTX L-mode is unstable to ~electrostatic ITG [This is older, not identical models, but basically same as new stuff]

- Linear calculations at five different radii (r/a=0.6-0.8)
- GYRO growth rates are larger than E×B shearing rates ( $\gamma_E$ ) except for r/a=0.6
- TGLF growth rates always much larger (up to 2×)

