

Supported by

Dependence of P_{LH} on X-point Radius

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics New York U Old Dominion U ORNL PPPL** PSI **Princeton U** Purdue U **SNL** Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

R. Maingi¹, S. Gerhardt² 1) Oak Ridge National Lab 2) Princeton Plasma Physics Lab ** Contributions from C.S. Chang NSTX Transport and Turbulence TSG meeting

Princeton, NJ Jan. 27, 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hvogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache IPP, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

Office of

Science

Dependence of the L-H power threshold on X-point CAK radius

- In NSTX, DIII-D, JET (and probably other machines), an observation that P_{LH} decreases with triangularity (radius of Xpoint) has been noted but not documented
 - Could have an impact on future operational scenarios, using low δ to get H-mode and higher δ for improved stability, confinement
- CS Chang proposed in a ~ 2003 seminar that the ion loss near the X-point increased with increasing R
 - This would set-up a pre-transition $\rm E_r$ more easily and could translate to a lower $\rm P_{LH}$
- Goal: document the dependence of P_{LH} on triangularity (X-point radius) at fixed κ , δ_r^{sep}
 - Target δ =0.4, 0.6, 0.8 (in DN configuration?)
 - Need XGC modeling/analysis to document results

- Document role of X-point loss vs. X-point radius (Chang)
- Calculations on ability to make three different δ (Gerhardt)
- Decide on using LSN vs DN
- Decide on kappa value desired
- Decide on whether to us pre-heating during \mathbf{I}_{p} ramp: save V-s
- What to do about δ_{U} ?