

Supported by

Dependence of momentum and particle pinch on collisionality

Wayne Solomon, PPPL

With S.M. Kaye, L.F. Delgado-Aparicio, ... and the NSTX Research Team

Transport and Turbulence Topical Science Group meeting January 27, 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep **U** Quebec

Dependence of momentum and particle pinch on collisionality

- Aims:
 - Compare dependence of momentum pinch velocity on collisionality with analytic theory and/or gyrokinetic predictions
 - Compare momentum pinch velocity with particle pinch velocity
 - Repeat with different q to begin to investigate q-dependence
- Technique:
 - Use n=3 non-resonant magnetic perturbations to distort the rotation profile, allowing for separation of the roles of momentum diffusion vs convection (pinch).
 - Scan collisionality by varying Ip, Bt at fixed q
 - As reported by Kaye et al, IAEA 2006
 - Use Ne puffing and/or supersonic gas injection to perturb edge density and measure particle transport properties

Motivation

- Rotation widely acknowledged as playing critical and beneficial role in the performance of fusion plasmas
 - Stabilization of resistive wall modes and neoclassical tearing modes
 - Confinement improvement through turbulence suppression (*E* x *B* shear)
- Understanding momentum transport key to obtaining predictive knowledge of rotation for future devices
 - Momentum pinch physics important part of problem
- Size of momentum pinch will determine how peaked rotation will be in future devices
 - ITPA JEX TC-15

Perturbative τ_{ϕ}, χ_{ϕ} Can be Obtained from Transient Application of nRMP

- Braking should be
 - long enough to have measurable affect on rotation
 - Not so long as to affect underlying plasma (ie shorter than momentum confinement time)
- If apply second pulse, need to wait for plasma to "recover"
- Must change V_{ϕ} independently of dV_{ϕ}/dr
 - can unravel relative contribution of χ_{ϕ} and V_{ϕ}^{pinch}

Reasonably Good Agreement Between Theory and Experiment on both NSTX and DIII-D

- Theory predicts drive of pinch through low-*k* turbulence
 - Coriolis drift, Peeters et al. PRL (2007)
 - $-\nabla B$, curvature drifts, Hahm *et al.* PoP (2007)

Experimental plan

