Plasma Stored Energy Increases as Plasma Spins up in a Set
of NSTX NBI-heated L-mode Plasmas
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L-mode Plasma Confinement Reaches that of the H-mode of
Conventional Tokamaks

 Both T, and T, increase as plasma toroidal velocity increases
 No formation of a transport barrier is observed
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All High-k Channels Saw Decreased Scattering
Power as Plasma Spins up
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 Plasma rotation leads to large Doppler frequency



Reduction in Peak Spectral Power in the High-k Measuremen
Region is Correlated with Increase in WexB/Ymasz

Quenching rule for ion-scale turbulence for shaped plasma is
shown as wEXB/’Yma,a: ~ 141(14/3)06/(/{/15) Kinsey et al., PoP 2007

WEx B,WM /| Ymaax continuously increase to approach 1.1-1.2
predicted by the quenching rule with local A~1.9-2.1 and k~1.5

— Correlated with the continuous decrease in the high-k spectral power
— Consistent with the nonlinear coupling between low-k and high-k
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TRANSP Shows lon and Electron Transport Reduced with
Increasing ExB Shear; lon Transport well above Neoclassical

(ﬂ) Waltz Miller ExB sheanng rate (b) Hahm-Burrell ExB shearing rate
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Linear Stability Analysis Shows that ITG and ETG are both
Unstable

« Maximum ITG growth rate is comparable to ExB shearing rate

« Maximum ETG growth rate is more than 10 times larger ExB
shearing rate
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« Stability Analysis was performed with the GS2 code (Kotschenreuther et al., 199%)



Local ITG/TEM simulations predict substantial heat flux over
some region, strongly suppressed by ExB shear

* No sign of L-mode shortfall, but may occur further out

Figure 14. (a) wr.p/Vma as a function of r/a: (b) predicted
electron and ion heat flux normalized to the gyro-Bohm unit.

0./ Qg (open circle) and Q;/ Qg (open square) and the
gyro-Bohm unit, Qcg (red line): (c) predicted (open squares) and
experimental (coloured band) @; as a function of r/a: (d) predicted
(open squares) and experimental (coloured band) Q. as a function of
r/a. The vertical width of the bands denotes the experimental
uncertainty.
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Figure 13. Electron and ion heat flux, @, (open square) and @,
(asterisks), from a E x B shear scan as a function of wr.p/ Vmax-
The coloured horizontal bands denote the experimental electron and
ion heat flux, Q. .., (magenta) and Q; ., (green), and the vertical
width of the bands denotes the experimental uncertainty (mainly due
to uncertainties in ohmic heating and measured Kinetic profiles).
Experimental E x B shearing rate is denoted by the vertical line.



Global effects (turbulence spreading, profile shear) expected
to be important for quantitative fluxes

Local GYRO simulations

NSTX 141716A48 1=0.448 s

102 E 1T 17T Ll | | 1T 17T | 1T 17T | 1T 1T | T T 171 E
- = \::: - ) §
| \'\ - \\\ Q -

1 ~ N\ — e

10 & ~ =
- N E
B N |

ol N

10 & = & =
- = -

10_1 | | | I | | I | | I | | [ 1 1 1 | | |

0.55 0.6 0.65 0.7 0.75 0.8 0.85

1 1T 17T 1T 17T 1T 17T 1T 17T 1T 1T |
0.8— ]
0.6— YIin,max ]

L T _
0.4 —
0.2 ]

0 | | | I | | I | | I | | [ 1 1 1 | | |
0.55 0.6 0.65 0.7 0.75 0.8 0.85

r/a

Global GYRO simulations

lon heat flux

I I I I ! I I I I ! \3 I I I ! I I I 3\ I I I
4 ITG-ke, wlo ExB ]
= 3+ ITG-ke, w/ ExB —
% i 1
< o —
g L ]
1 exp. ]
07 [ | : Lo L.-r'”\'”i‘m”f Lo |
0 0.2 0.4 0.6 0.8 1
Electron heat flux
T T T T T T T T ! T i T T T ! T T T 13 L\ 1‘ ;:' T T T T
4+ | s
=
- 2 —
g L
1
0 | |
0 0.2 0.4 0.6 0.8 1



Profile/ExB shear may be important for momentum transport

e Quasi-linear runs predict Pr=0.2-0.8, very small pinch (-1)

Assuming

Quasi-linear GYRO predictions
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This case is also forming the basis for validating TGLF local

transport model against local gyrokinetics

* Will need to account for non-local effects if important for
guantitative success
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NSTX L-mode provides a great place for multi-code
gyrokinetic analysis:

e Low beta — electrostatic ITG/TEM is sufficient

1) Quantify impact of non-local effects/turbulence-spreading on thermal
transport

2) Investigate profile/ExB shearing contributions to momentum transport

—  Don’t have perturbative measurements in NSTX L-modes, but did run an experiment on
MAST this year

3) Possibly validate with high-k & BES measurements
4) Investigate if an L-mode shortfall occurs further out

5) Code-code comparison between GTS, XGC-1 (full radius) and GYRO
(can’t do magnetic axis), all use different numerical algorithms

6) Use for validating transport models like TGLF
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