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1. Introduction.



Anomalous Electron Thermal Transport is Observed in All
NSTX Confinement Regimes

* Transport of electron energy in most tokamak experiments is
observed to exceed predictions of neoclassical theory.

 Theory and experiments suggest that toroidal ETG turbulence is a
candidate for anomalous electron thermal transport.

* A microwave collective scattering diagnostic was implemented at
NSTX to measure electron-scale density fluctuations indicative of
high-k turbulence (k_p, > 1).
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Critical Gradient and Critical ETG Formula

* Critical gradient q.

qturb x (VTe _ (VTe )C)

r

VT, <(VT,). ~threshold for instability

 Normalized gradient of quantity X

R/L, =R(VX/X)

0w %)

* Jenko critical ETG [cf. Jenko Phys. Plasmas 2001].

0.8R/L_
= Nax-

(R/LTe)crit A
\ (1+7)(1.33+4191s/q)(1-1.5¢) with T=Z,T,/T,




Outline

2. High-k Scattering Measurement.



Collective Thomson Scattering is used to measure High-k
Turbulence

* Collective/coherent Thomson scattering »
kA, <1

* Scattered power density d’P Pr2L |H- 517

* Three wave-coupling between incident beam (k. , w.) and plasma
(k, w)

k, =k + k W, = W+ W,

° W; w,>>wimposes Bragg condition  w,

k=2k:sin(6./2) A K



High-k Microwave Scattering Diagnostic at NSTX
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Gaussian Probe beam: 200 mW, 280 GHz,
A~ 1.07 mm, a =3cm (1/e?radius).

Propagation close to midplane => k, spectrum.

5 detection channels => range k,~ 5-30 cm (high-k).
Wavenumber resolution Ak =+ 0.7 cm™,

Radial coverage: R = 106-144 cm.

Radial resolution: AR = % 2 cm (unique feature).

View from top of NSTX (D.R. Smith PhD thesis 2009)



Each Channel of the NSTX High-k Scattering System Detects a
Fluctuation Wavenumber k

Different channels measure different k.
Each k has a different Doppler shift.
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3. Experimental Results.
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A Set of NBl-heated H-mode Plasmas is Used to Study High-k
Turbulence during Current Ramp-down

* NBI heated, HHFW heating is absent
during the run.

* Current ramp down between t = 400
ms and t = 450 ms (from LRDFIT).

 Time range of interest is t >~ 300 ms,
covering current ramp-down phase, and
after ELM event at t ~ 290 ms.

 MHD activity is quiet during that time.
Before t ~ 290 ms MHD activity is high
(cf. low-f Mirnov signal).

e Line integrated density is fairly constant
during the time range of interest.
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Theory Predicts that Electron Density Gradient Can Drive the
Difference (R/L;.). — R/L;, and Stabilize Turbulence

Shot 141767

27 / ‘g /
¥ \r‘/ = Jenko (R/L, )
1r —o-0.8"RIL_

(1+1)*(1.33 + 1.91...)

o | | | |
025 03 035 04 045 05 055 0.6
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* Jenko critical gradient is a maximum of a R/L,__ term and an term.

08R/L,,

(R / LTe )crit = max A .
(1+7)(1.33+1.915/g)(1-1.5¢) with 7=Z2,T,/T,

* High enough values of R/L, could bring critical ETG to experimental ETG levels or

even higher. This should have a stabilizing effect on turbulence.
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Observed Fluctuations Correlate to Difference Between
Critical and Experimental ETG

shot 141767, channel 1

(R/L..2®) ~ (R/Ls,).; dictates the presence of
fluctuations.

Prior to t ~320 ms, (R/L.*) ~ (R/Lp)e = -1 IS
=>» ETG is marginally stable, no fluctuations. -2

After t ~ 320 ms, (R/L,.°®) > (R/L+.) it 6l
=» fluctuations develop.

[\

- exp. R/Lre
- Jenko (R/Lre)c

| ‘ | Jenk
o (AL - AL

During period ~ 350 ms < t < ~ 500 ms,
similar difference (R/L..2*) - (R/L:) it
produces VERY different fluctuations. This
will be later explained by the density
gradient stabilization of lower numbers.
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Time Traces of Local Electron Density Gradient Confirm its
Influence on Observed Fluctuations

shot 141767, channel 1

* As R/L, increases, it dominates in
Jenko’s formula (R/L;,).,. (t <350 ms, t >
410 ms & t > 515 ms).

=>» Fluctuations decrease.

* Previoustot~ 320 ms ETG is marginally
stable. No fluctuations.

* R/L,, has a stabilizing effect when it
dominates Jenko critical gradient.

- exp. R/Lre
- Jenko (R/Lre)c

% R/L;, is the drive of ETG turbulence.
: Even though R/L;, is increasing in time,
R/L,. is driving R/L;)., and able to
stabilize ETG turbulence.

— Jenko (RIL).
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Wavenumber Spectrum of Fluctuations and Electron Density
Gradient
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kP,
Lower-k (kgp, < 10) fluctuation level (6n/n_)? decreases.
After t ~ 448 ms, higher k (koo ~ 12-16) fluctuation levels increase.

During that time, R/L,_ increases.
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4. Comparison with Linear Simulations.
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Critical Gradient Computed with GS2 Linear Runs Agrees
with Jenko’s Critical ETG

Shot 141767

8
* (R/LTe)_;, is explicitly calculated using 7|
GS2. 6
5l
 Fairly good agreement is observed 4
between GS2 (R/L;,).,, calculations and 3
Jenko’s formula. 2r o Pl
1 A i Jenko (RIL),
A GS2(RIL,).
* This is consistent with Jenko’s critical o | | | ; ; i
ETG formula and previous comparisons  °|
with experimental ETG. 4t
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GS2 Linear Simulations Show the Wavenumbers at
Maximum Growth Rate Shift to Higher k in Time

shot 141767, channel 1

* Low-k linear growth rates (k_.p, <1) increase with time, and are lower than high-k.

* As kop(y,ax) Moves to higher k (e.g. t =570 ms), observed fluctuations decrease.
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Wavenumber at Maximum Linear Growth Rate Correlates to
Electron Density Gradient and Observed Fluctuations

At each time, determine

* Vmar/(c/0)
¢ kap s(ymax)

t=0.42s

10 éO éO 46
Ko Ps

* Evolution of k.py(y,,.,) in time follows
R/L,, at the scattering location.

* R/L,.and k.ipg(y,,.,) correlate well
with observed fluctuations.
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Correlation Between Wavenumber Values at Maximum

Growth Rates and Electron Density Gradient
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Low correlation between y, ., and experimental R/L;, and R/L,..
) correlates better to R/L;, and R/L,_than linear growth rates.

koo (Y

Best correlation is observed between kqp(y, .../ and R/Lm;I

The conjecture is that R/L, is driving high-k turbulence to higher wavenumbers.
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A Scan in R/L,, is Performed with GS2 to Confirm its Effect

on High-k Turbulence

y most sensitive when 0.8*R/L,, dominates
Jenko’s critical ETG (t = 363, 450, 570 ms).

Y /(CS/a)

t =400 ms, 0.8*R/L,, term not dominant
=» vy insensitive to R/L,.

‘Lower-k’ values are more sensitive to R/L,, than
higher-k values.

| ‘ Y /(CS/a)
6
2
.
1 . \i 4
. 2

t =450 ms

—.— F{/Lne fac=0.8
—— R/Lne faC=09
—.— R/Lne fac=1
R/L_ fac=1.1
ne

When R/L,. dominates, R/L,, decreases growth
rate and shifts y to higher-k (cf. t = 570 ms)
=>» stabilizing effect.

R/L,. could be a responsible factor for driving
turbulence to higher k values.
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5. Summary.
6. Discussion and Future Work.
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Summary

Difference R/L;, — (R/L;.).;; dictates the presence of observed
high-k fluctuations.

High values of local electron density gradient (R/L,.) make it
the dominant term in (R/L;,).:; =2 Stabilizing effect on observed
fluctuations.

crit

Increasing R/L,, = high-k fluctuations shift to even higher k
values.

A scan on local R/L,, with GS2 shows linear growth rates can be
very sensitive to local R/L,, when it is the dominant term in
Jenko’s critical ETG. In the opposite case, linear growth rates
are practically insensitive to local R/L,,...



Discussion and Future Work

Issues and Discussion

e Linearly unstable high-k modes (GS2) do not correspond with
measured k from the scattering system.
=>» Measured k is NOT the most unstable mode.
=» Dominant k. with small ky => mismatch with GS2 unstable k.

=>» Need to establish a connection between the experimental-k and the
simulation-k to compare simulation and experiment.

Future Work

 Perform transport analysis to study the influence of the local
electron density gradient in electron thermal transport.

e Carry out nonlinear gyrokinetic simulations to evaluate the effects
of electron density gradient on turbulence and electron thermal
transport.
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Collective Thomson Scattering Theory is used to measure
ETG-scale turbulence

* Collective/coherent and incoherent scattering

* Typical values (NSTX) A,~10°m, k ~k_<10*m (high-k)
== kA,< 1 (collective scattering)

* Scattered power density

classical electron radius

~ 2 le
d2P P 2L -0 2 |, (k, CU)| V,L, volume and length of scattering volume
=Ly, L, | €| [l polarization tensor
dQdv 174 direction of incident electric field

T observation time
26



Spatial Localization and Wavenumber Resolution

Plasma fluctuations satisfy |k*B=0 (1) Perpendicular fluctuations.
k=2ksin(6,/2)  (2) Bragg Condition.
Midplane propagation =» k is radial.

Strong dependence on toroidal curvature => QObligue propagation enhances
localization.

—» ki Receiver
At NSTX, beam propagationisout —» ES

of midplane (¥ 5°) = k ~radial. —»

Gaussian beam =» Ak and AR

A(r) = exp(—rf / wg )

G(k,)=exp(-k; / Ak®) o
Ak =2/ w,

View from top (not to scale) 27



Toroidal Rotation has an Effect on Measured Fluctuations:
Doppler Shift

* Doppler shift w, = kv,
* Diamagnetic velocity component in toroidal direction
k, <O
50 T T
[ 40 F i
1 - D |Vpe Be O - 30
Vpe €, =— — < e” waves R v, <0 v, >0
en,B 2 20} 0 i
< X 10k a)D > wD < O i
V,e =——"->0 i1onwaves
Di @ 2 10 -
en.B 3
N -20 : . . . . ,
0.38 039 040 041 042 043 044 045
time (s)
A 10"

& &
spectral density (a.u.)

frequency (MHz)
o

0.38 0.39 0.40 0.41 0.42 0.43 0.44 0.45
time (s)

Adapted from Mazzucato Nuc. Fusion 2009.
Here f>0 =» e direction.




High-k Fluctuations Start after Small Spike in D,and Mirnov
Signal

shot 141767, channel 1

 Beforet ™~ 290 ms, MHD activity is high. At
~290 ms, an ELM event takes place and
MHD activity quiets.

e Betweent™~ 290 msandt~ 320 ms, high-
k fluctuations are absent and MHD
activity is quiet.

* High-k fluctuations start at t ~ 320 ms,
after small ELM event, detected in D, and
Mirnov signal.

low—f Mironv (G)

—10} =3 Time range of interest
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Observed High-k Fluctuations Correlate to Local Electron
Density Gradient

shot 141767, channel 1
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Electron Density Gradient suffers the biggest change in the scattering region.

Doppler shift is measured as distance from 0 to observed fluctuation frequency.
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A Scan on R/L,, is Performed to Compute a Critical Gradient
with GS2 Linear Runs

shot=141767, 1=0.4s

* R/Lis varied keeping all other
guantities constant. The factor is
called (R/L;, fac).

o R/Lre fac=0.7
O R/ Ll'e fac=0.8
1 -©- R/LTe fac=0.9

| _e_R/LrefaC=1
* High-k linear growth rates saturate o RIL,_fac=1.1
with decreasing (R/L,). 1 - R/ fac=1.2
o ! ! ! !
. 15 20 25 30
(R./L.Te)cr,.t is found to b-e the KoPs g /L fac),.. = 01979
MmiNnimum R/LTe to SaUSfy Y =0. (R/LTe )crit = 0.9954
6 :
/// ° ke P s =15
4} 1 . kp =18
"-\6 o« k. p_=21
O"J o| _ | 0" s
‘:“- ‘l: ke Py =24
L Oexp. (R/Ly, fac)., k, p =30

0 0.5 R/L fac1 1.5
Te 31
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shot 141767, channel 1
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