

Supported by

Stabilization of Electron-Scale Turbulence by Electron Density Gradient in NSTX

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** Old Dominion ORNL PPPL Princeton U Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U** Illinois **U** Maryland **U** Rochester **U** Tennessee U Tulsa **U** Washington **U** Wisconsin X Science LLC

J. Ruiz Ruiz¹ A. E. White¹, Y. Ren², W. Guttenfelder² 1. MIT 2. PPPL

> NSTX-U Physics Meeting Princeton Plasma Physics Laboratory December 8, 2014

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokvo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U **NFRI** KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA. Frascati CEA. Cadarache IPP, Jülich **IPP**, Garching ASCR, Czech Rep

Office of

Science

Outline

- 1. Introduction.
- 2. High-k Scattering Measurement.
- 3. Experimental Results.
- 4. Comparison with Linear Simulations.
- 5. Summary.
- 6. Discussion and Future Work.

Outline

1. Introduction.

- 2. High-k Scattering Measurement.
- 3. Experimental Results.
- 4. Comparison with Linear Simulations.
- 5. Summary
- 6. Discussion and Future Work.

Anomalous Electron Thermal Transport is Observed in All NSTX Confinement Regimes

- **Transport of electron energy** in most tokamak experiments is observed to exceed predictions of neoclassical theory.
- Theory and experiments suggest that toroidal **ETG** turbulence is a candidate for anomalous electron thermal transport.
- A *microwave collective scattering diagnostic* was implemented at NSTX to measure electron-scale density fluctuations indicative of *high-k turbulence* ($k_{\perp}\rho_s > 1$).

From Mazzucato PPPL presentation

Critical Gradient and Critical ETG Formula

• Jenko critical ETG [cf. Jenko Phys. Plasmas 2001].

$$(R / L_{Te})_{crit} = \max \begin{cases} 0.8R / L_{ne} \\ (1 + \tau)(1.33 + 1.91\hat{s} / q)(1 - 1.5\varepsilon) & \text{with } \tau = Z_{eff}T_e / T_i \end{cases}$$

Outline

1. Introduction

2. High-k Scattering Measurement.

- 3. Experimental Results.
- 4. Comparison with Linear Simulations.
- 5. Summary
- 6. Discussion and Future Work.

Collective Thomson Scattering is used to measure High-k Turbulence

Collective/coherent Thomson scattering

 $k\lambda_D \leq 1$

Scattered power density

$$\frac{d^2 P}{d\Omega d\nu} = P_i r_e^2 L_z \left| \Pi \cdot \hat{e} \right|^2 \frac{\left| \tilde{n}_e(k, \omega) \right|^2}{VT}$$

- Three wave-coupling between incident beam $(k_{\rm i}\,,\,\omega_{\rm i})$ and plasma $(k\,,\,\omega)$

$$\vec{k}_{s} = \vec{k} + \vec{k}_{i}$$
 $\omega_{s} = \omega + \omega_{i}$

High-k Microwave Scattering Diagnostic at NSTX

- Gaussian Probe beam: 200 mW, 280 GHz, $\lambda_i \approx 1.07$ mm, a = 3cm (1/e² radius).
- Propagation close to midplane => k_r spectrum.
- 5 detection channels => range $k_r \sim 5-30 \text{ cm}^{-1}$ (*high-k*).
- Wavenumber resolution $\Delta k = \pm 0.7 \text{ cm}^{-1}$.
- Radial coverage: R = 106-144 cm.
- Radial resolution: $\Delta R = \pm 2 \text{ cm}$ (unique feature).

View from top of NSTX (D.R. Smith PhD thesis 2009)

Each Channel of the NSTX High-k Scattering System Detects a Fluctuation Wavenumber k

- Different channels measure different k.
- Each k has a different *Doppler shift*.

9

Outline

- 1. Introduction
- 2. High-k Scattering Measurement and Plasma Description.
- 3. Experimental Results.
- 4. Comparison with Linear Simulations.
- 5. Summary
- 6. Discussion and Future Work.

A Set of NBI-heated H-mode Plasmas is Used to Study High-k Turbulence during Current Ramp-down

- **NBI heated**, HHFW heating is absent during the run.
- Current ramp down between t = 400 ms and t = 450 ms (from LRDFIT).
- Time range of interest is t >~ 300 ms, covering current ramp-down phase, and after ELM event at t ~ 290 ms.
- MHD activity is quiet during that time.
 Before t ~ 290 ms MHD activity is high (*cf.* low-f Mirnov signal).
- Line integrated density is fairly constant during the time range of interest.

Theory Predicts that Electron Density Gradient Can Drive the Difference (R/L_{Te})_c – R/L_{Te} and Stabilize Turbulence

• Jenko critical gradient is a maximum of a R/L_{ne} term and an s/q term.

$$(R/L_{T_e})_{crit} = \max \begin{cases} 0.8R/L_{n_e} \\ (1+\tau)(1.33+1.91\hat{s}/q)(1-1.5\varepsilon) & \text{with} \quad \tau = Z_{eff}T_e/T_e \end{cases}$$

 High enough values of *R/L_{ne} could* bring critical ETG to experimental ETG levels or even higher. This *should* have a *stabilizing* effect on turbulence.

Observed Fluctuations Correlate to Difference Between Critical and Experimental ETG

- $(R/L_{te}^{exp}) \sim (R/L_{Te})_{crit}$ dictates the *presence* of fluctuations.
- Prior to t ~ 320 ms, (R/L_{te}^{exp}) ~ (R/L_{Te})_{crit}
 → ETG is marginally stable, no fluctuations. -2
- After t ~ 320 ms, (R/L_{te}^{exp}) > (R/L_{Te})_{crit}
 → fluctuations develop.
- During period ~ 350 ms < t < ~ 500 ms, similar difference $(R/L_{te}^{exp}) - (R/L_{Te})_{crit}$ produces VERY different fluctuations. This will be later explained by the *density* gradient stabilization of lower numbers.

Time Traces of Local Electron Density Gradient Confirm its Influence on Observed Fluctuations

- As *R/L_{ne}* increases, it dominates in Jenko's formula (*R/L_{Te}*)_{crit} (t < 350 ms, t > 410 ms & t > 515 ms).
- → Fluctuations decrease.
- Previous to t ~ 320 ms ETG is marginally stable. No fluctuations.
 - **R/L**_{ne} has a **stabilizing** effect when it dominates Jenko critical gradient.

★ R/L_{Te} is the **drive** of ETG turbulence. Even though R/L_{Te} is increasing in time, R/L_{ne} is driving $R/L_{Te})_{crit}$ and able to stabilize ETG turbulence.

Wavenumber Spectrum of Fluctuations and Electron Density Gradient

• Lower-k ($k_{\vartheta}\rho_s < 10$) fluctuation level ($\delta n_e/n_e$)² decreases.

• After t ~ 448 ms, higher k ($k_{\vartheta}\rho_s$ ~ 12-16) fluctuation levels increase. During that time, R/L_{ne} increases.

Outline

- 1. Introduction
- 2. High-k Scattering Measurement.
- 3. Experimental Results.
- 4. Comparison with Linear Simulations.
- 5. Summary
- 6. Discussion and Future Work.

Critical Gradient Computed with GS2 Linear Runs Agrees with Jenko's Critical ETG

- (*R/LTe*)_{crit} is explicitly calculated using GS2.
- Fairly good agreement is observed between GS2 $(R/L_{Te})_{crit}$ calculations and Jenko's formula.
- This is consistent with Jenko's critical ETG formula and previous comparisons with experimental ETG.

GS2 Linear Simulations Show the Wavenumbers at Maximum Growth Rate Shift to Higher k in Time

- Low-k linear growth rates $(k_{\perp}\rho_s \leq 1)$ increase with time, and are lower than high-k.
- High-k wavenumbers at maximum linear growth rate shift to higher-k.
- As $\mathbf{k}_{\perp} \mathbf{\rho}_{s}(\mathbf{\gamma}_{max})$ moves to higher k (e.g. t = 570 ms), observed fluctuations decrease.

Wavenumber at Maximum Linear Growth Rate Correlates to **Electron Density Gradient and Observed Fluctuations**

Correlation Between Wavenumber Values at Maximum Growth Rates and Electron Density Gradient

• Low correlation between γ_{max} and experimental R/L_{Te} and R/L_{ne} .

- $k_{\vartheta}\rho_s(\gamma_{max})$ correlates better to R/L_{Te} and R/L_{ne} than linear growth rates.
- Best correlation is observed between $k_{\vartheta}\rho_s(\gamma_{max})$ and R/L_{ne} .
- The conjecture is that R/L_{ne} is driving high-k turbulence to higher wavenumbers.

A Scan in *R*/*L_{ne}* is Performed with GS2 to Confirm its Effect on High-k Turbulence

Outline

- 1. Introduction
- 2. High-k Scattering Measurement and Plasma Description.
- 3. Experimental Results.
- 4. Comparison with Linear Simulations.
- 5. Summary.
- 6. Discussion and Future Work.

- Difference R/L_{Te} (R/L_{Te})_{crit} dictates the *presence* of observed high-k fluctuations.
- High values of local **electron density gradient** (R/L_{ne}) make it the dominant term in $(R/L_{Te})_{crit} \rightarrow stabilizing$ effect on observed fluctuations.
- Increasing $R/L_{ne} \rightarrow$ high-k fluctuations shift to even higher k values.
- A scan on local R/L_{ne} with GS2 shows linear growth rates can be very sensitive to local R/L_{ne} when it is the dominant term in Jenko's **critical ETG**. In the opposite case, linear growth rates are practically insensitive to local R/L_{ne} .

Issues and Discussion

- Linearly unstable high-k modes (GS2) **do not correspond** with measured k from the scattering system.
 - \rightarrow Measured k is NOT the most unstable mode.
 - → Dominant k_r with small k_θ => mismatch with GS2 unstable k.

→Need to establish a *connection* between the experimental-k and the simulation-k to compare simulation and experiment.

Future Work

- Perform transport analysis to study the influence of the local electron density gradient in electron thermal transport.
- Carry out nonlinear gyrokinetic simulations to evaluate the effects of electron density gradient on turbulence and electron thermal transport.

Back up slides

Collective Thomson Scattering Theory is used to measure ETG-scale turbulence

• Collective/coherent and incoherent scattering

- Typical values (NSTX) $\lambda_D \sim 10^{-5} \text{ m}, k \sim k_{\perp} < 10^4 \text{ m}^{-1}$ (high-k) $\implies k\lambda_D < 1$ (collective scattering)
- Scattered power density

$$\frac{d^2 P}{d\Omega d\nu} = P_i r_e^2 L_z \left| \Pi \cdot \hat{e} \right|^2 \frac{\left| \tilde{n}_e(k, \omega) \right|^2}{VT}$$

- r_e classical electron radius
- *V*,*L*_z volume and length of scattering volume
- Π_{e} polarization tensor
 - direction of incident electric field
- T observation time

Spatial Localization and Wavenumber Resolution

- Plasma fluctuations satisfy $\begin{cases} k \cdot B \approx 0 & (1) \text{ Perpendicular fluctuations.} \\ k = 2k_i \sin(\theta_s / 2) & (2) \text{ Bragg Condition.} \end{cases}$

- <u>Midplane propagation</u> $\rightarrow k$ is radial.
- Strong dependence on *toroidal curvature* => Oblique propagation enhances localization.
- At NSTX, beam propagation is out of midplane (~ 5°) $\rightarrow k$ ~ radial.
- Gaussian beam $\rightarrow \Delta k$ and ΔR

 $A(r_{\perp}) = \exp(-r_{\perp}^2 / w_0^2)$ $G(k_{\perp}) = \exp(-k_{\perp}^2 / \Delta k^2)$ $\Delta k = 2 / w_0$

View from top (not to scale)

Toroidal Rotation has an Effect on Measured Fluctuations: Doppler Shift

- Doppler shift $\omega_D \approx k_t v_t$
- Diamagnetic velocity component in toroidal direction

High-k Fluctuations Start after Small Spike in D_{α} and Mirnov Signal

- Before t ~ 290 ms, MHD activity is high. At ~290 ms, an ELM event takes place and MHD activity quiets.
- Between t ~ 290 ms and t ~ 320 ms, highk fluctuations are absent and MHD activity is quiet.
 - **High-k fluctuations** start at t \sim 320 ms, after small ELM event, detected in D_{α} and *Mirnov signal*.

Observed High-k Fluctuations Correlate to Local Electron Density Gradient

- Electron Density Gradient suffers the biggest change in the scattering region.
- Doppler shift is measured as distance from 0 to observed fluctuation frequency.

A Scan on R/L_{Te} is Performed to Compute a Critical Gradient with GS2 Linear Runs

shot=141767, t=0.4s $R/L_{\tau_{e}}$ is varied keeping all other quantities constant. The factor is $- R/L_{T_e}$ fac=0.8 γ /(C_s/a) c called (R/L_{Te} fac). R/L_{Te} fac=0.9 - R/L_{Te} fac=1 High-k linear growth rates saturate 1 with decreasing (R/L_{e}) . \bigcirc R/L_{Te} fac=1.2 0 15 20 25 30 • $(R/L_{Te})_{crit}$ is found to be the $\textbf{k}_{\theta} \rho_{\textbf{s}}$ $(R/L_{Te} fac)_{crit} = 0.1979$ minimum R/L_{Te} to satisfy $\Upsilon = 0$. $(R/L_{Te})_{crit} = 0.9954$ 6 $k_{\theta} \rho_s = 15$ • $k_{\theta} \rho_s = 18$ 4 γ /(C_s/a) • $k_{\theta} \rho_s = 21$ • $k_{\theta} \rho_{s} = 24$ $k_{\theta} \rho_{s} = 27$ **O** exp. $(R/L_{Te} \text{ fac})_{crit}$ • $k_{\theta} \rho_s = 30$ 0.5 R/L_{Te} fac 1.5

Issues

Issues

