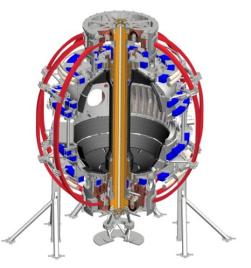


Supported by

XP1509: Combined β_N and I_i control Group Review


Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** ORNL PPPL **Princeton U** Purdue U SNL Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U Wisconsin** X Science LLC

Dan Boyer

S. Gerhardt, D. A. Gates, D. Mueller, D. Battaglia S. A. Sabbagh¹, E. Kolemen²

> ¹Columbia University ²Princeton University

07/21/2015

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI **Chonbuk Natl U** NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA. Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep

- Motivation:
 - Safe operation near stability boundaries
 - Controlled, repeatable experiments
 - Steer stored thermal/magnetic energy during shut down
 - Planning current profile and rotation profile control strategies that will use similar approach (actuators, control laws, software)
- Goals:
 - Demonstrate capability of new multi-input-multi-output control algorithm
 - Generate control oriented models, assess controllability and limitations
 - Attempt to demonstrate control during ramp-up, flattop, and ramp-down
- Allocation:
 - 0.75 days, split over multiple days, 1 additional day possible

Global parameter control category ("DBC") in PCS

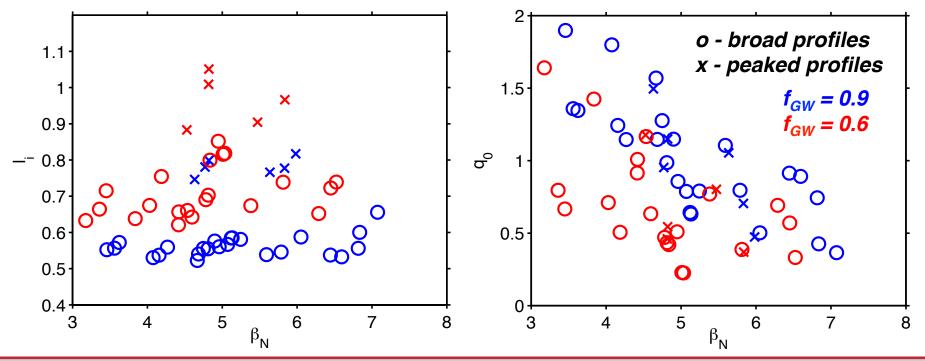
- Framework for combined control of many measurements using many `higher level' actuators
 - Example measurements: betaN, li, q0, qmin, etc...
 - **Example actuators:** beams, Ip, density, shape control points, etc...
- Flexible control implementation
 - PID control hand-tunable, similar to ISOFLUX
 - State-space control more general, for more complex control laws

Pre-requisites for running XP

- PCS code updates
 - NBI category
 - Code specifications are written, need to be coded and tested offline
 - GPC category
 - Code specifications are written, need to be coded and tested offline
- rtEFIT commissioning
 - Needed for real-time β_N and I_i
 - ISOFLUX desired for outer gap feedback
 - Could potentially use PCC

Operational requirements

- Diagnostics
 - Real-time magnetics for rtEFIT (rtEFIT required for real-time β_N and I_i)
 - Magnetics for EFIT reconstructions
 - Profile diagnostics for TRANSP analysis
- Hardware requirements
 - Beams under PCS control by GPC category
- Analysis during XP
 - Between shots EFIT
 - Between shots TRANSP (optional, but expected to be available)



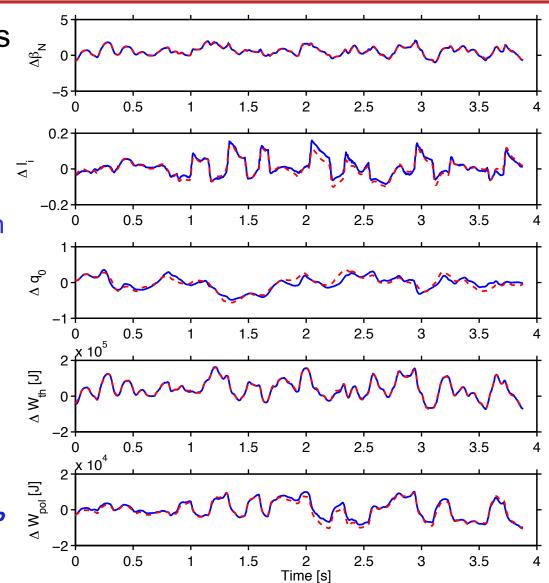
Control of li may not be easy...

 30 TRANSP runs with different combinations of beams for beam characterization XP

 $-f_{GW} = 0.9$ and 0.6, 10cm outer gap, I_p 700 - 1000kA, $B_T 0.5T - 0.75T$

- For $q_0 > 1$, very little variation in I_i with beam mix
- Profile peaking variations may help

Shot Plan – Step 1: System identification


- Establish reference shot
 - >1s flat top, 0.65 T (as high as possible), ~700kA, ~12cm outer gap, fGW as low as possible while keeping qmin above 1
- Conduct modulation around reference for system identification
 - Modulate beams and outer gap early in shot
 - Include plasma current modulation later in shot
 - If discharges are too short, may require separate shots
- Repeat at higher current or lower density reference

Number of shots: 6-12

TRANSP used for preliminary system identification

- Modulated TRANSP runs used to identify linear model
 - TRANSP compared with model prediction
 - Beam and gap modulation only until 1s
 - Current and density modulation 1s to end
- Used for initial controller testing/tuning
- Use to guide system ID shot design

Model

Shot Plan - Step 2: Flattop β_N and I_i control, ramp up study

- Initial condition error rejection
 - During ramp-up, vary current ramp rate, beam timing, gap to vary li
 - Will be used to assess controllability during ramp-up
 - Specify **target trajectory** for β_N and I_i from the reference shot, activate control shortly after flattop
 - Use control gains derived from TRANSP analysis as default
 - If possible, use gains derived from system identification shots
- Disturbance rejection
 - Apply an input disturbance (vary feedforward current and/or injected power)
 - Attempt to track reference β_N and I_i
 - If discharge length is long enough, turn off feedback later in shot
 - Demonstrate effect of disturbance, improvement gained with controller
 - Use beam+gap feedback initially, add current later on

Number of shots: 6-10

Shot Plan - Step 3: Ramp up control of I_i, flattop stored thermal and magnetic energy control

- Ramp-up control of li
 - During ramp-up, use feedback on plasma current or gap request to track li trajectory
 - Initially track reference if repeatability is an issue
 - Later try to track a lower target for vertical stability
- During flattop, switch phases to control thermal and magnetic stored energy
 - Use beam+gap only initially, then add current feedback
 - Initially track reference trajectory
 - Attempt to control during ramp-down
 - Later track target
 - Ramp down to 10% level
 - Ramp down to 20% level

Number of shots: 6-10

Analysis of Results

• EFIT

- Compare evolution of β_N and I_i to target
- Assess effect of feedback on shaping, current profile
- TRANSP
 - Analyze heating and current drive
 - Open and closed loop TRANSP simulations will be compared to experiments to assess use of TRANSP as a control design tool
- Control oriented modeling
 - Control oriented q profile modeling efforts (Z. Ilhan, Lehigh U.)

