Status of Electron Bernstein Wave (EBW) Research on NSTX and CDX-U

Presented by Gary Taylor

Plasma Physics Laboratory, Princeton University

In collaboration with

P.C. Efthimion, B. Jones, J.R. Wilson Plasma Physics Laboratory, Princeton University J.B. Wilgen, G.L. Bell, T.S. Bigelow, D.A. Rasmussen Oak Ridge National Laboratory A.K. Ram, A. Bers Plasma Science and Fusion Center, Massachusetts Institute of Technology R.W. Harvey CompX, Del Mar, California

> 44th American Physical Society, Division of Plasma Physics Meeting Orlando, Florida November 11-15, 2002

EBWs May Enable Local Heating, Current Drive and $T_e(R,t)$ Measurements on ST Plasmas

- Electron cyclotron heating, CD and radiometry not viable for spherical torus (ST) plasmas, where $\omega_{pe} \gg \omega_{ce}$
- EBWs propagate when $\omega_{pe} >> \omega_{ce}$ and strongly absorb at EC resonances, allowing EBW heating, CD and radiometry in STs
- Local EBW heating and CD are potentially important for noninductive startup and MHD suppression in an ST
- EBWs can couple to electromagnetic waves near the upper hybrid resonance (UHR) that surrounds ST plasmas

EBW Experiments on CDX-U and NSTX Have Focused on Maximizing EBW Conversion to X-Mode (B-X)

If L_n is short at the UHR, EBWs tunnel to the fast X-mode:

 $C_{BX} = 4e^{-\pi\eta}(1-e^{-\pi\eta})\cos^2(\phi/2+\theta), \ \eta \propto L_n$

On CDX-U, Limiter Shortened L_n to 0.7cm, Increasing C_{BX} to > 95%, in Good Agreement with Theory

Need C_{BX} > 80% for Viable EBW Heating and Current Drive System on NSTX

NSTX

- Measured $C_{BX} < 5\%$ for NSTX L-Mode plasmas, 10-15% during H-Modes
- Reproduce CDX-U experiments with local limiter on NSTX next year, for both B-X and B-X-O conversion
- Results from experiment on NSTX using HHFW antenna tiles to shorten L_n this year were very encouraging:

- achieved $C_{BX} \le 50\%$

Increased C_{BX} by Using Tiles in HHFW Antenna as Local Limiter to Shorten L_n at UHR and Increase C_{BX}

C_{BX} Increased from 10% to 50% as L_n Shortened from 2 to 0.7 cm, Agreeing with Theory

EBW Heating and Current Drive May Optimize Equilibrium for High β Plasmas by Suppressing MHD

- Greatest access to HFS for fundamental EBW frequencies
- EBW heating and current drive modeling with GENRAY ray tracing and CQL3D bounce-averaged Fokker-Planck codes

In β ~ 20% NSTX Plasma, EBWCD Efficiency Comparable to ECCD and Very Localized

CD localization supports requirements for NTM suppression
= CompX

- Limiter in CDX-U scrape-off shortened L_n to increase C_{BX} from ~10% to > 95%
- Similar technique on NSTX shows a five-fold increase in C_{BX} to ~ 50%; Limiter can also widen B-X-O transmission window
- Measured C_{BX} are in good agreement with theoretical predictions that use measured L_n on both CDX-U and NSTX
- EBWCD modeling of NSTX β ~ 20% plasma, shows good localization, suitable for NTM suppression, and CD efficiencies at least as good as ECCD
- Next year will attempt to achieve C_{BX} and C_{BXO} > 80% as a prerequisite to installing ~ 1 MW EBW heating system

