

Resistive Wall Mode Stabilization in NSTX

S. A. Sabbagh¹, J. Bialek¹, A. Sontag¹, W. Zhu¹, B. LeBlanc², R. E.
Bell², A. H. Glasser³, L. L. Lao⁴, J.E. Menard², M. Bell², T. Biewer², D.A. Gates², R. Fitzpatrick⁵, and the NSTX Research Team

 ¹Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA
 ²Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA
 ³Los Alamos National Laboratory, Los Alamos, NM, USA
 ⁴General Atomics, San Diego, CA, USA
 ⁵University of Texas at Austin, Austin, TX, USA

45th Annual Meeting of Division of Plasma Physics American Physical Society

October 27 – 31, 2003 Albuquerque, New Mexico

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL PPPL PSI **SNL UC Davis UC** Irvine UCLA UCSD **U** Maryland **U New Mexico U** Rochester **U** Washington **U** Wisconsin Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U U Tokvo JAERI loffe Inst TRINITI KBSI KAIST ENEA. Frascati CEA. Cadarache **IPP, Jülich IPP.** Garching **U** Quebec

Department of E

<u>NSTX Preparing for Active Stabilization of High β</u> <u>Global MHD Instabilities</u>

Motivation

- Resistive wall mode (RWM) identified and associated with global rotation damping
- □ Beta collapse can follow rotation damping when $\beta_N > \beta_{N \text{ no-wall}}$

Approach

- Examine physics of passive stabilization
- Enhance mode detection system (A. Sontag, talk KO1.005)
- Study rotation damping mechanisms (W. Zhu, poster LP1.013)
- Determine impact of rapid rotation on equilibrium
- Design and implement active feedback stabilization system

NSTX plasmas operate in wall-stabilized space

Normalized beta, $\beta_N = 6.5$, with $\beta_N/l_i > 9.5$

- β_N up to 35% over β_N no-wall (computed using DCON)
 - Stability limit dependent on both l_i and pressure peaking

Toroidal beta has reached 35% ($\beta_t = 2\mu_0 / B_0^2$)

Critical rotation frequency depends on $\beta_N/\beta_{N-Nowall}$

Plasma stabilized above $\beta_{N-no-wall}$ for 18 τ_{wall} (B_t > 0.4T)

- Plasma approaches with-wall β_N limit
 - VALEN growth rate becoming Alfvénic
- Passive stabilizer loses effectiveness at maximum β_N
 - Neutrons collapse with β_N - suggests internal mode
- n = 1 RWM not observed
 - n = 2 computed to be unstable
- EFIT reconstructed β_N includes rotation

Exterior control coil can provide adequate stabilizing field

- Initial system plan has 6.8kA*turns (Applied B_{edge}= 27G @ 54Hz)
- Exterior coil design decision based on time, budget, risk constraints balanced by performance

Active mode control modeling shows mode stabilization

<u>Preparation for active feedback stabilization</u> research in high β_N ST plasmas has begun

- Passive stabilization above ideal no-wall β_N limit by up to 35%
 Improvement in plasmas with highest β_N up to 6.5; β_N/l_i = 9.5
- Rapid rotation damping/ β collapses at $\beta_N > \beta_{N \text{ no-wall}}$ and lower B_t
 - Global, non-resonant damping mechanism associated with RWM
 - Unlike slower, localized, diffusive damping observed with island locking
- Plasmas passively stabilized for > 18 τ_{wall} at increased B_t
 n = 1 RWM not observed; n = 2 computed unstable
- Toroidal rotation now included in equilibrium reconstructions
 - Large shift of core pressure contours from magnetic surfaces
 - Reconstructed stored energy essentially unchanged
- Ex-vessel active control coil design chosen for initial feedback system
 - **Targeting sustained operation at** $\Delta\beta_N = 68\%$

Supporting slides follow

