

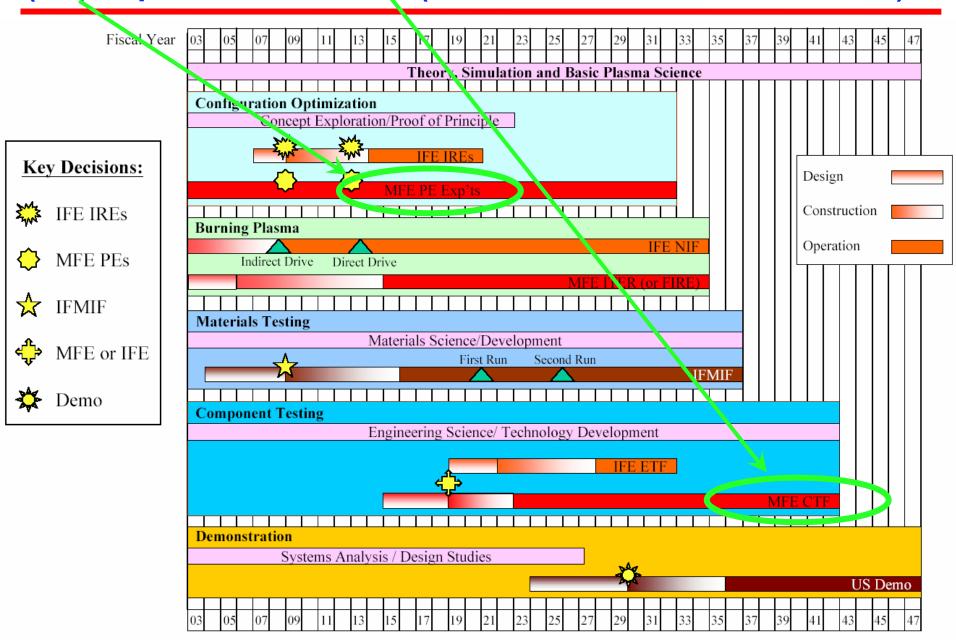
NSTX Physics Progress toward Sustained High-Performance Plasmas of CTF

Y-K Martin Peng, P J Fogarty, D J Strickler, T W Burgess, J Tsai, B E Nelson Oak Ridge National Laboratory – UT Battelle

C Neumeyer, C Kessel, D Mikkelsen, J Schmidt, R Bell, P Rutherford, J Menard, D Gates, E Synakowski, L Grisham Princeton Plasma Physics Laboratory

> S Sabbagh Columbia University

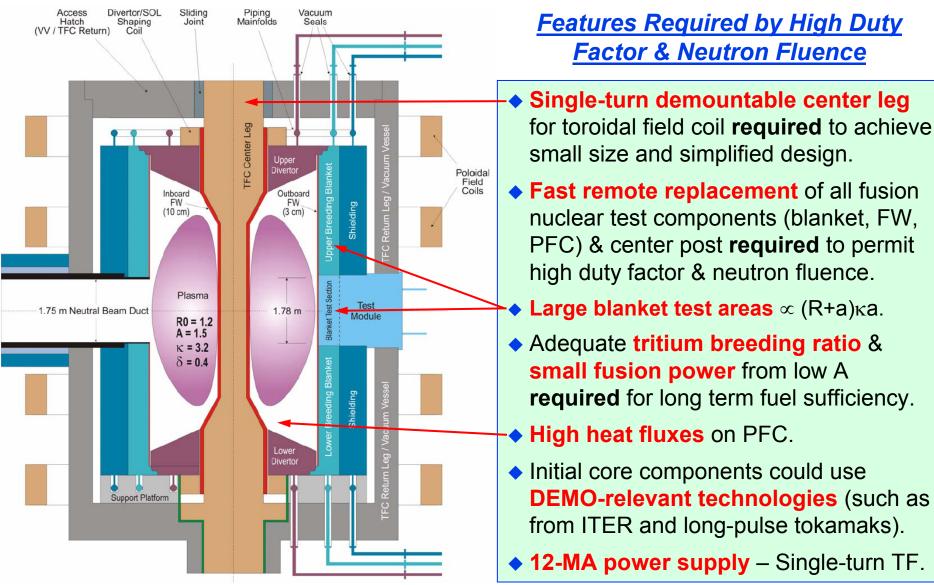
6th Annual Meeting of the Division of Plasma Physics


November 15 – 19, 2004 Savannah, GA

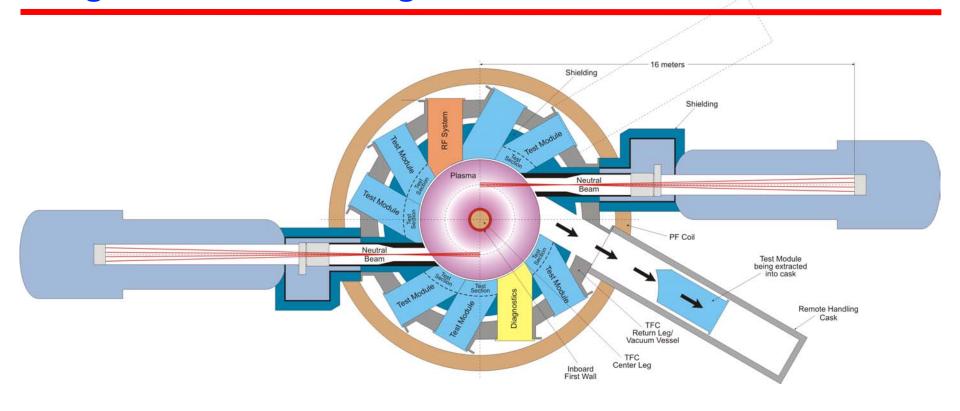
CTF – A Facility for Developing Fusion Engineering Science with Stringent Performance Goals

- The CTF facility will provide the necessary integrated environment to develop fusion engineering science
 - High neutron and surface fluxes (new materials, chamber systems)
 - Steady state burning plasma (plasma control support)
 - Large test area and volume (chamber systems)
 - High neutron fluence (new fusion materials)
- Required performance:
 - 14 MeV W_L > 1 MW/m², over testing area > 10 m² & volume > 5 m³
 - Fluence > 0.3 MW-yr/m² per year
 - 30% duty factor, > 6 MW-yr/m² total capability
 - Test tritium self-sufficiency goal: net consumption ~ 10's g/yr
- This presentation:
 - Programmatic importance
 - Required engineering features
 - Plasma and device parameters based on latest phys understanding
 - Database needs in physics, engineering, & technology

PP, ITTTO-TEXZEUG+

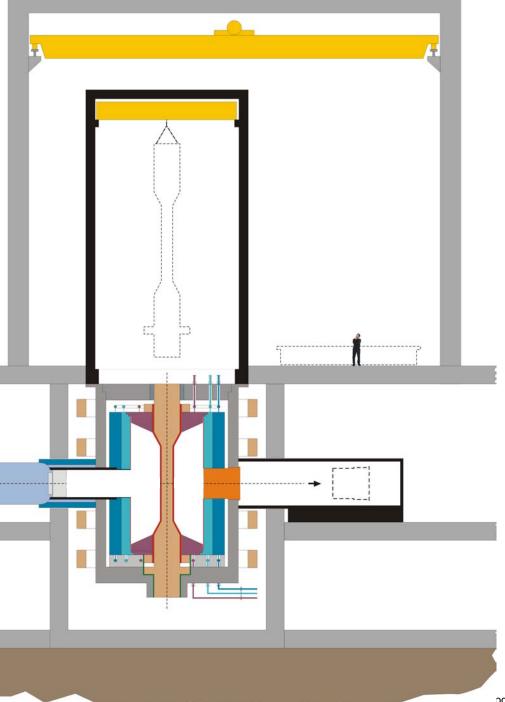

ST Offers Strong Candidate for MFE Performance Extension (PE) Experiment and CTF (FESAC Panel – Goldston, 2003)

ST CTF Provides Optimized Configuration to Fulfill Fusion Energy Sciences Program Strategies


- DOE Office of Science Strategic Plan for Fusion Energy Sciences Program (http://www.science.doe.gov/sub/Mission/Mission_Strategic.htm)
 - CTF identified as "Fusion Energy Contingency" in the next decade
 - CTF is key tool to achieve Strategic Goal:
 - "Develop new materials, components, and components necessary ..."
 - Preparation in this decade for CTF (NSTX, NSST) addresses additional Strategic Goals:
 - "Determine the most promising approaches and configurations ..."
 - "Develop a fundamental understanding of plasma behavior sufficient ..."
- ST extends fusion plasma parameters to β_0 ~1 and A~1
 - New data challenge the conventional-A physics basis → ITER
 - New physics discoveries Address Overarching Scientific Themes
 - "Understand the dynamics of matter and fields ..."
 - "Create and understand ... starfire on earth"
 - "Make fusion power practical"

Optimized Device Configuration Features of ST Also Fulfill the CTF Mission Effectively

NSTX Progress in CTF Basis


Mid-Plane Test Modules, Neutral Beam Injection, RF, Diagnostics Are Arranged for Fast Removal & Insert

- 8 mid-plane blanket test modules provides ~ 15 m² at maximum flux
 - Additional cylindrical blanket test area > 50 m² at reduced flux
- 3 m² mid-plane access for neutral beam injection of 30 MW
- 2 m² mid-plane access for RF (10 MW) and diagnostics
- All modules accessible through remote handling casks (~ITER)



- ITER approach for midplane test modules and neutral beam systems
- Full-remote vertical access

APS DPP, 11/15-19/2

ogress in CTF Basis

NSTX Progress in CTF Basis

ST Physics Delivers the Required CTF Performance

New discoveries in extended parameter space challenge and strengthen scientific basis for fusion energy.

Highly efficient utilization of applied field

- Strong plasma shaping & self fields (vertical elongation ~ 3, B_p/B_t ~ 1)
- Very high β_T (~ 40%) & bootstrap current

Contains plasma energy efficiently

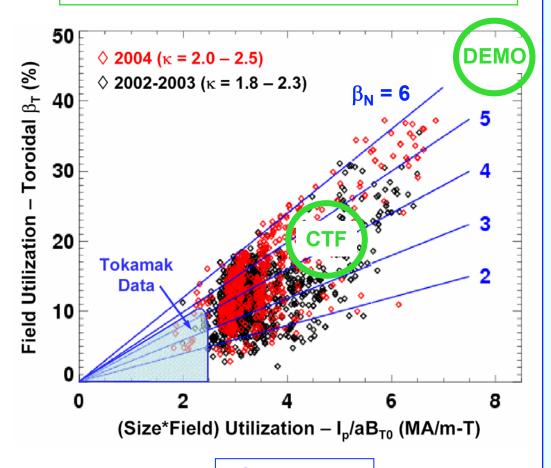
- Small plasma size relative to gyro-radius (a/ρ_i~30–50)
- Large plasma flow $(M_A = V_{rotation}/V_A \le 0.3)$
- Large flow shearing rate ($\gamma_{ExB} \le 10^6/s$)

Efficient Heating and Current Drive

- Supra-Alfvénic fast ions (V_{fast}/V_A ~ 4–5)
- High dielectric constant ($\varepsilon = \omega_{pe}^2/\omega_{ce}^2 \sim 50$)

Disperses plasma fluxes effectively

- Large mirror ratio in edge B field ($f_T \rightarrow 1$)
- Strong field line expansion

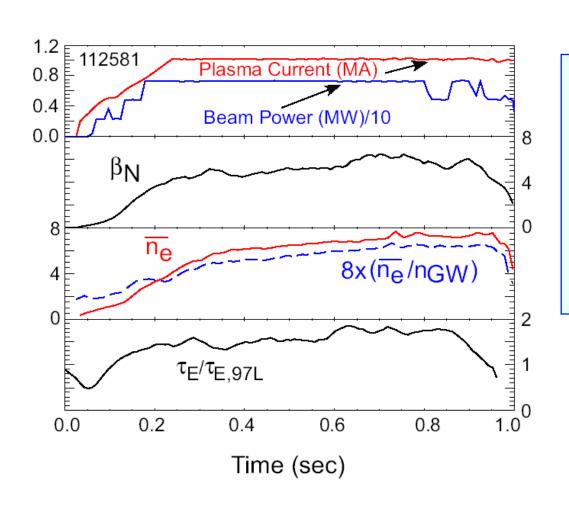

Allows effective solenoid-free operation

Small magnetic flux content (~ ℓ_iR₀I_p)

NSTX Exceeded Standard Scaling & Reached Higher I_n/aB_T, Indicating Better Field and Size Utilization

CTF β requirement well within stability Limits, without using active control

 Verified very high beta prediction ⇒ new physics:


$$\beta_{T} = 2\mu_{0}\langle p \rangle / B_{T0}^{2} \le 38\%$$

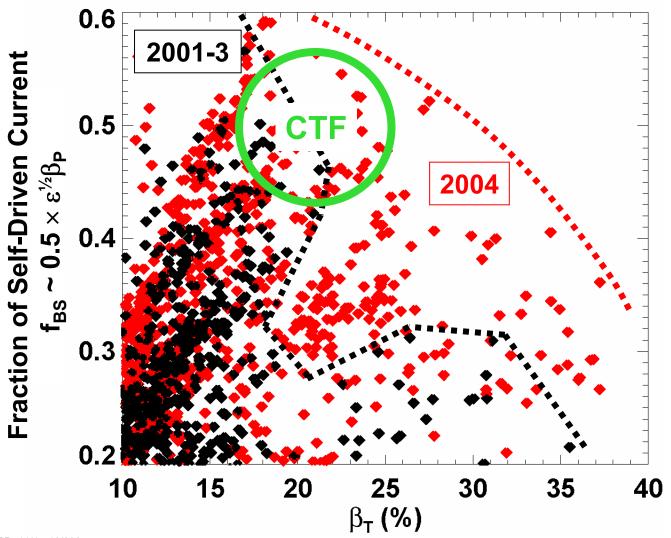
$$\beta_{N} = \beta_{T} / (I_{p}/aB_{T0}) \le 6.4$$

$$\langle \beta \rangle = 2\mu_{0}\langle p \rangle / \langle B^{2} \rangle \le 20\%$$

- Approaching sustained plasmas with neutral beam and bootstrap current alone
 - Basis for neutral beam sustained ST CTF at Q~2
 - Relevant to ITER hybrid mode optimization
- To produce and study full noninductive sustained plasmas
 - Relevant to DEMO

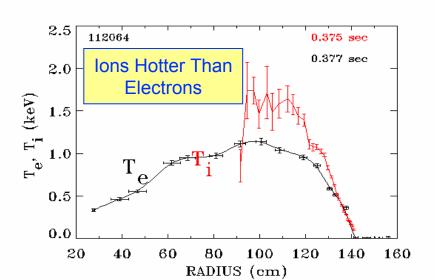
VO/2-3, Kaye et al

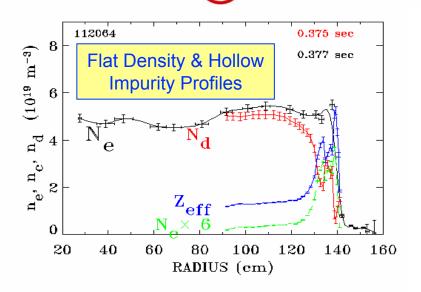
NSTX Has Made Significant Progress Towards Goal of High- β_T , Non-Inductive Operation

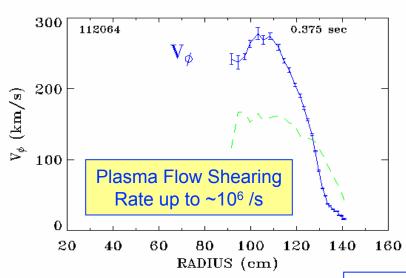


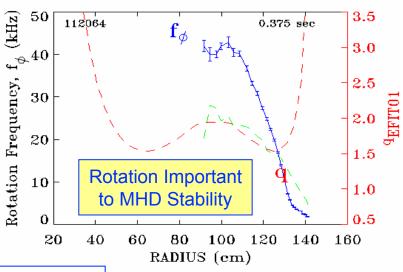
- $\tau_{\text{lp flattop}} \sim 3.5 \tau_{\text{skin}}$
- τ_{W flattop} ~ 10 τ_E
- $\beta_T > 20\%$, $\beta_N > 5$
- $\tau_{\mathsf{E}}/\tau_{\mathsf{E},\mathsf{L}}$ >1.5 for ~10 τ_{E}

2004 Progress on NSTX Also Covered CTF Level of Sustained Plasmas

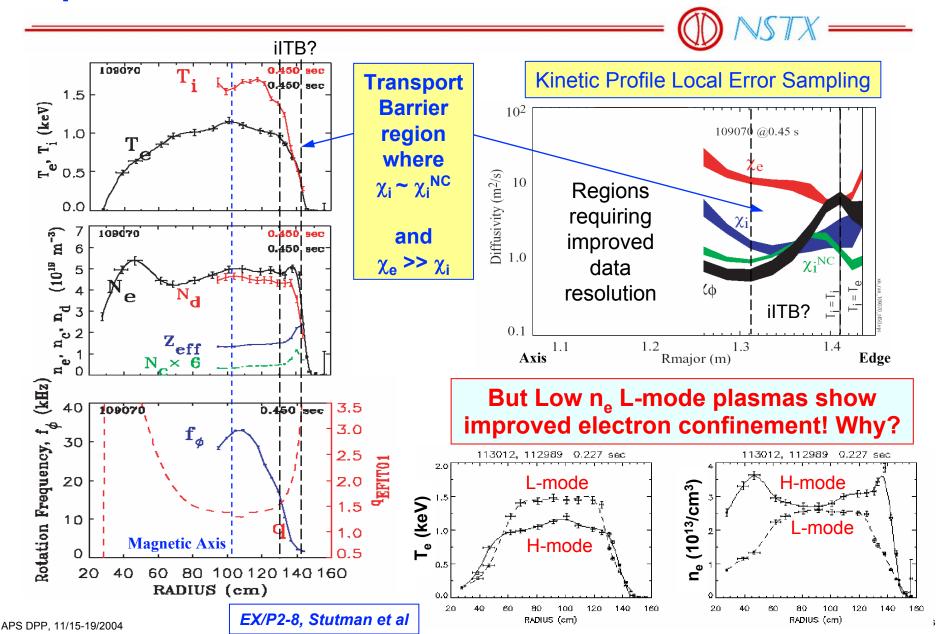


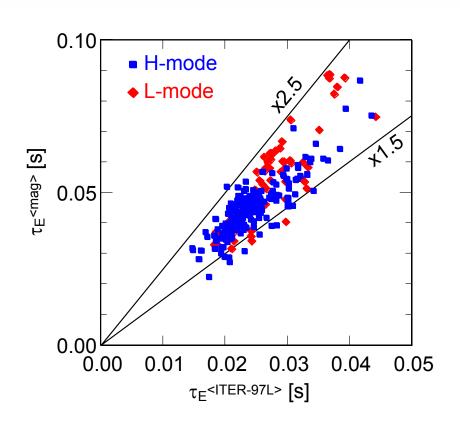


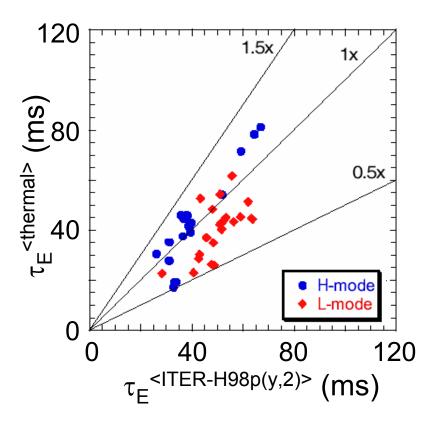

- EFIT02
- Peak β_T
- All shapes


NSTX Progress in CTF Basis

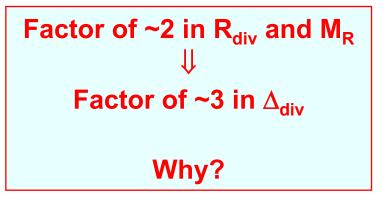
Measurements & Analysis of Plasma Profiles Provide Basis for Projections

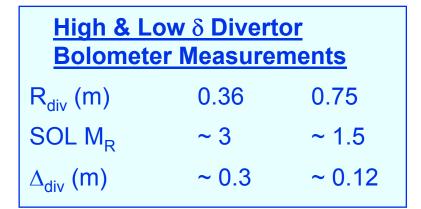


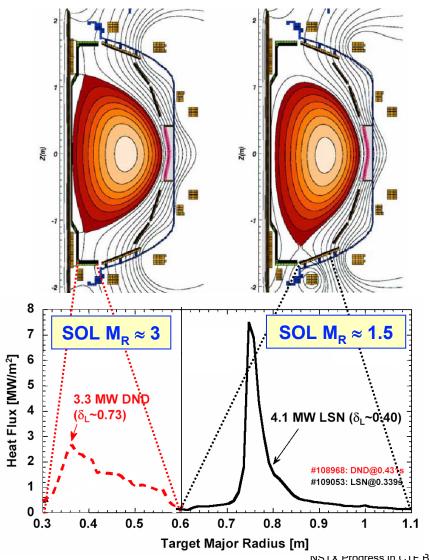

EX/P2-26, Menard et al


Ion ITB in NBI-Heated H-Mode Contrasts with Improved Electron Confinement in L-Mode

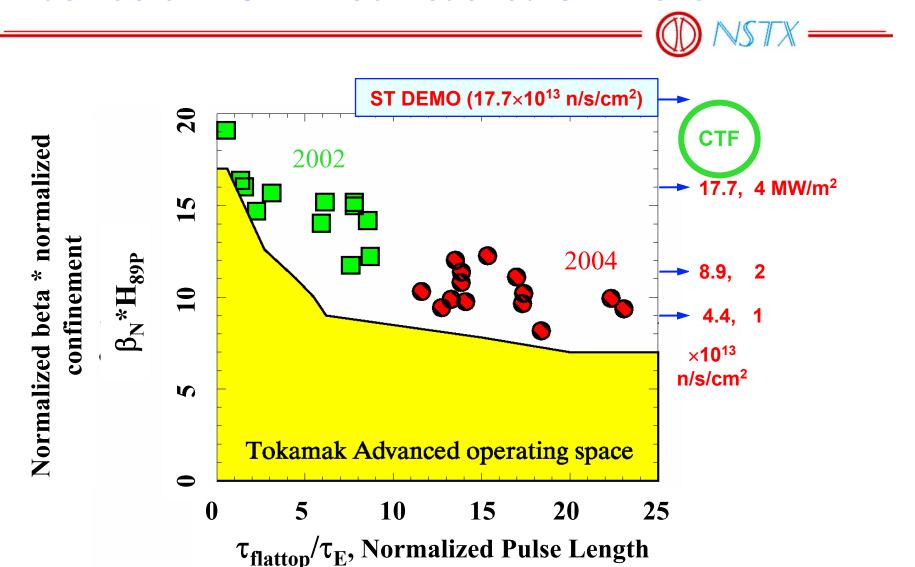
Global and Thermal τ_E 's Compare Favorably with Higher A Database


- Compare with ITER scaling for total confinement, including fast ions
- TRANSP analysis for thermal confinement

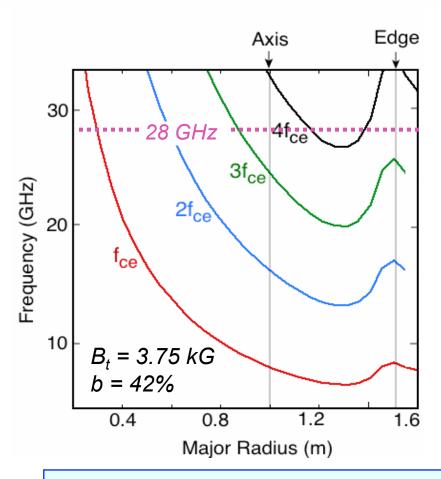

L-modes have higher non-thermal component and comparable τ_E ! Why?

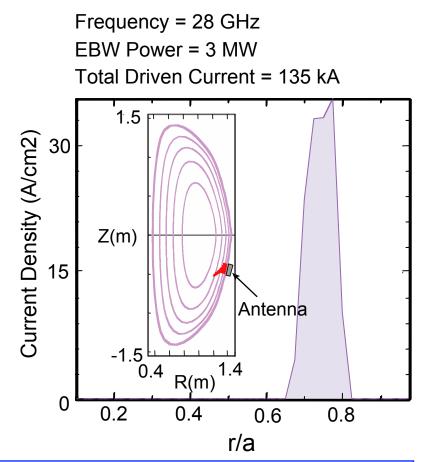

APS DPP, 11/15-19/2004 OV/2-3, Kaye et al NSTX Progress in CTF Basis

Increased SOL Mirror Ratio (M_R) ⇒ Increased Footprint & Decreased Peak of Divertor Heat Flux



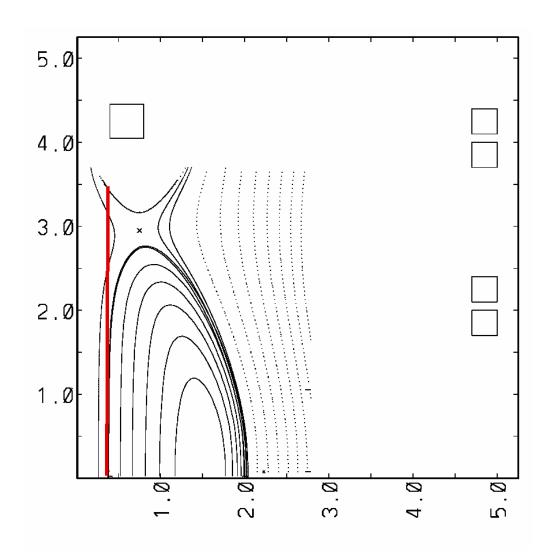
APS DPP, 11/15-19/2004

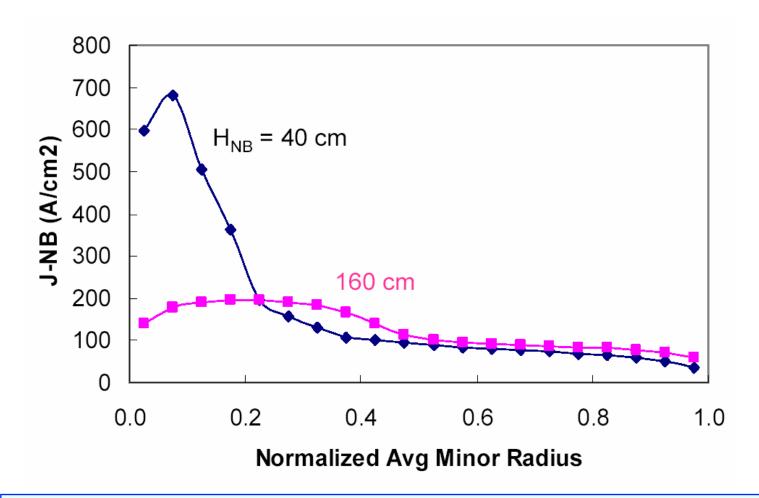

Normalized Pulse Lengths of High Performance Plasmas on NSTX Also Reached CTF Level



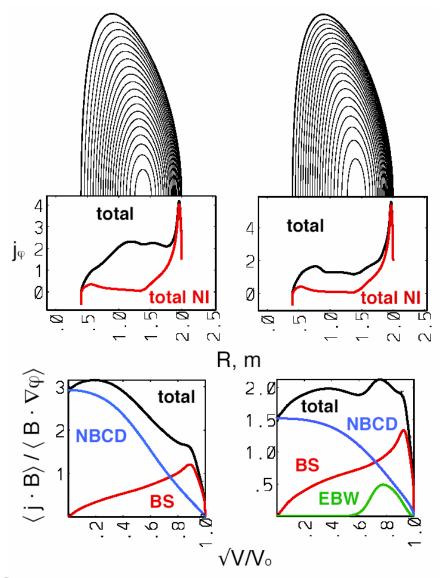
Well positioned to address the science of sustained high-performance plasmas.

Modeling Predicts that 28 GHz EBW Can Drive Efficient Off-Axis Current at Plasma $\beta \sim 40\%$




 EBW ray tracing, deposition and CD efficiency being studied with GENRAY & CQL3D for frequencies between 14 to 28 GHz

CTF Plasma With $\ell_i(1)$ = 0.25 – 0.5, κ = 3.2, δ = 0.4, β_N = 4.0, and β_T = 20% Using Far-Away PF Coils


Both Inboard Limited & Double Null Diverted Plasmas Can be Produced as Long as Low ℓ_i is maintained

Broad Driven Current Profile is Calculated for CTF With 160-cm Height (H_{NR}) Cross Section at NBI 110 keV

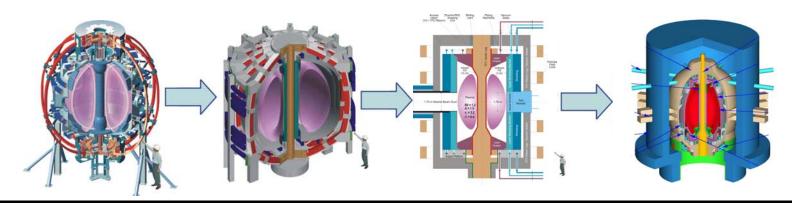
- Positive Ion NBI Technology Would be Adequate for $\langle n_e \rangle \le 10^{20} \ /m^3$
- Broad NBI Current Profile Permits Low ℓ_i

CTF Plasma Current Profiles Calculated by JSOLVER Code for Steady-State TSC Simulation.

- Profile with $\ell_i(1) = 0.5$ & $q_0 \sim 2$ maintained by J_{NB} and J_{BS} (left-hand side) using $P_{NB} = 36$ MW
- Adding $I_{EBW} = 1$ MA with $P_{NB} = 30$ MW would allow ℓ i(1) = 0.25 & q0 ~ 4

NSTX Progress in CTF Basis

Initial CTF Parameters Are Estimated Based on Latest Understanding of Toroidal Confinement Physics


- $R_0 = 1.2 \text{ m}, a = 0.8 \text{ m}, b/a = 3.2$
- $B_T = 2.5 T$, $I_{TF} = 15.3 MA$

14MeV neut. flux, MW/m²	1.0	2.0	4.0
Combined H _{98pby} factor	1.61	1.48	1.38
β _τ , %	14	24	39
$\beta_N H_{89P}$	9.0	11.3	16
Safety factor, q _{cyl}	4.2	3.0	2.4
Normal density, n _{GW}	0.16	0.17	0.21
Bootstrap current frac.	0.53	0.43	0.44
I _p , MA	9.1	12.8	16.1
P _{fusion} , MW	72	144	288
P _{NBI} , MW	30	37	50
Beam energy, kV	110	160	250
P _{RF} , MW	6	10	15
Fusion amplification Q	2.3	3.6	5.2
P_{rad} (for $P_{div} = 15 \text{ MW/m}^2$)	50	75	90
Net T _{consumption} /yr goal, gm	7	14	180

- Baseline (1 W/m²) parameters well within ST plasma operation limits
- Higher neutron fluxes reach progressively more limits
 - Limits only in β and safety factor
 - Assuming effective edge radiation
 - Requires moderate density << limit
- Technology & physics of CTF can be advanced in synchrony
 - 1 MW/m² moderate ST physics, test beyond ITER technologies
 - 2-4 MW/m² toward DEMO level
- Low-A enables close approach to tritium self-sufficiency
 - Line-of-sight fusion neutron absorption on TF center leg
 - ~80% neutron capture & breeding by outboard blanket, TBR = 1.2

30% duty factor

Physics Data Needed by CTF Will Shape NSTX Research and Next Step Spherical Torus (NSST)

Device	NS	TX	NSST (DOE plan)		CTF (DOE plan)		DEMO
Mission	Proof of	Principle	Performance Extension		Energy Development, Component Testing		Practicality of Fusion Electricity
R (m)	0.8	85	~1.5		~1.2		~3
a (m)	0.0	65	~0.9		~0.8		~2
κ, δ	2.5,	0.8	~2.7, ~0.7		~3, ~0.4		~3.2, ~0.4
I _p (MA)	1.5	1	~5	~10	~9	~16	~25
B _T (T)	0.6	0.3	~1.1	~2.6	~	2.1	~1.8
Pulse (s)	1	5	~50	~5	Steady state		Steady state
P _{fusion} (MW)	_		~10	~50	~72	~290	~3100
W _L (MW/m ²)	-	_		_		~4	~4
Duty factor (%)	~0	.01	~0.01		~30	30	60
TFC; Solenoid	Multi-turn	; Solenoid	Multi-turn; Solenoid		Single-turn; No-solen.		Single-turn; No-solen.

As a Engineering Science Test Facility, CTF Requires Well-Established ST Physics at Multi-MA Current

- How to introduce plasma magnetic flux without solenoid induction?
 - How to initiation ~1 MA? (RF, CHI & outer magnetic coils)
 - How to ramp-up to multi-MA, and sustain current in overdense plasmas? (RF, NBI & Bootstrap)
- How do plasma energy, particle, and momentum get lost from plasma?
 - How to maintain large plasma spin, shown to be important?
 - How to ensure $T_i >> T_e$, for neutral beam dominated plasmas?
 - Does high β cause large differences for plasma turbulence & loss?
- How do EM waves and supra-Alfvénic ions interact with plasmas?
 - $\begin{array}{l} \ E_{beam}/T \ (NSTX) \sim E_{beam}/T \ (ITER) \sim 50 \\ \ V_{beam}/V_{Alfvén} \ (NSTX) \sim V_{alpha}/V_{Alfvén} \ (CTF) \sim 4 \end{array} \right\} \ new \ Alfvén \ modes? \end{array}$
 - Electron Bernstein Wave has great potential for ST; data needed.
- How does large in/out asymmetry of edge help disperse plasma flux?
 - Which edge configuration works best: double-null, single-null, inboard limited?

CTF Control Technology Support Needs Defined; Some Satisfied by or Extend Present Fusion Program Plans

To Achieve Baseline Performance (1-2 MW/m²)

- TF system engineering
 - TF center leg optimization and fabrication technology
 - Multi-MA, low-voltage TF power supply
- Plasma facing components (~ITER)
 - Highly reliable and remotely replaceable divertor components (large MTBF and small MTTR)
 - Take advantage of DEMO-relevant ITER designs
- Heating, current drive, and fueling (~ITER)
 - 300 kV negative ion beam under development by LHD, JT60U
 - EBW at ~140 GHz being developed and used
 - Highly reliable and remotely replaceable RF launchers
- Requires database from long-pulse high performance tests (Tore Supra, KStar, LHD, ITER, test stands, etc.) to raise MTBF

ST CTF Has Attractive Physics and Engineering Features to Enable Cost-Effective Fusion Development

- CTF, a user facility for fusion engineering science, demands stringent fusion plasma performance
- ST CTF provides optimized configuration to fulfill CTF mission and Fusion Energy Sciences Program Strategies
- ST extends the toroidal parameter space, challenges conventional A science, and delivers the required CTF performance
- Recent discoveries in ST research already proved several estimated CTF plasma conditions
- Steady State ST CTF design concept with $R_0 \sim 1.2$ m is estimated to satisfy baseline performance goals (1 MW/m²), with potential to reach DEMO-level testing (4 MW/m²)
- Additional ST physics data needs are identified and will shape present and next step research agenda
- CTF control technology support are identified, some within present fusion program plans

Costing for CTF (W_L =1 MW/ m^2 , $A_{test} \ge 10 m^2$) – I (in 2002 M\$)

SuperCode Costing Components	R ₀ =1.2m A= 1.5	Comments
1. Toroidal Device	<u>193</u>	
TF magnets	38	
 TFC center post 	(12)	U _{TFcenter} = 0.075/ton (single-turn cooled GlidCop)
 TFC outer magnet (VV) 	(26)	U _{TFouter} = 0.03/ton (single-turn Al, combined with VV)
PF magnets	50	U _{PF} = 0.058/ton (no OH solenoid)
 Device structure 	11	$U_{MS} = 0.052/ton$
Vacuum vessel	0	Combined with TFC outer conductor
 Blanket modules 	10	ITER-FEAT: 220; FIRE (reflector): 19*; CTF: basic T-breeding
 Device, penetration shielding 	43	blankets cost 1/3 of advanced test blankets**
Divertor, PFCs	29	ITER-FEAT: 109; FIRE: 42; CTF: U _{Div} = 1.61/m ²
Fueling	12	ITER-FEAT: 10; FIRE: 9
2. Device Ancillary Systems	187	
 Machine assembly tooling 	29	ITER-FEAT: 72; FIRE: 0; CTF only: ∝ R ^{3/4}
 Remote handling equipment 	152	ITER-FEAT: 145, FIRE: 101; CTF only: requires high duty factor
		RH operation, ∞ R ^{1/2}
 External cryostat 	0	
 Primary heat transport 	6	$U_{PHT} = $72.3/W^{0.7}$
 Thermal shield 	0	
3. Tokamak Gas & Coolant Systems	88	
- Vacuum	19	ITER-FEAT: 37; FIRE: 14; CTF only: ∝ R ^{1/4}
 Tritium (and fuel) handling 	41	ITER-FEAT: 104; FIRE: 9; CTF only: ∞ P _F ^{1/2}
Aux heat transport	8	$U_{AHT} = $33.9/W^{0.7}$
Cryogenic plant	0	7411
Heat rejection	8	
Chemical control	12	

^{*} ITER-FEAT-FIRE Cost Comparison, Fusion Study 2002, Snowmass; ** Comments by M. Abdou, B. Nelson APS DPP, 11/15-19/2004

Costing for CTF (WL=1 MW/m², $A_{test} \ge 10 \text{ m}^2$) – II (in 2002 M\$)

SuperCode Costing Components	R ₀ =1.2m A=1.5	Comments
4. Power Supplies & Control	<u>120</u>	
 Magnet power supplies 	63	
 Resistive TFC 	(52)	U _{TFC} = 0.4/MW (4X conventional power supply)
 Resistive PFC 	(11)	$U_{PFC} = 0.13/MVA$
 Heating system power supplies 	0	Included in heating systems costs
 Site electric plant, transformers, etc. 	21	ITER-FEAT: 38; FIRE: 18
Device operational I&C	36	ITER-FEAT: 72; FIRE: 23
5. Heating, Current Drive, Diagnostics	<u>210</u>	
– ECH-EBW	40	8, 10 MW @ 100 GHz, 12 MW @ 200 GHz (ITER-FEAT: 111)*
– NBI	125	30, 33, 34 MW at ~ 400 kV (ITER-FEAT: 138)
– LH	0	
 Plasma operational I&C 	45	ITER-FEAT: 214; FIRE: 29
6. Site, Facilities and Equipment	<u>252</u>	
 Land, site improvement 	0	Government site
Buildings	180	ITER-FEAT: 546; FIRE: 126
Hot cell	0	Included in Buildings
 Radwaste management 	38	ITER-FEAT:12; FIRE: 11 (CTF requires FNT testing at high duty
		factors, substantially increasing radwaste)
 Coolant supply and disposal 	18	ITER-FEAT: ?; FIRE: 18
 General test and qualification 	16	(CTF requires acceptance verification of all incoming test
		components.)
 Magnet fabrication tools 	0	
Total Construction Cost, no Contingency	<u>1,050</u>	
with 40% Contingency	<u>1,470</u>	Included in the ST development cost