

Divertor regimes in NSTX

V. A. Soukhanovskii^a,

R. Maingi^b, C. E. Bush^b, J. Boedo^c, A. Pigarov^c, R. Raman^d, R. E. Bell^e, T. Biewer^e, D. A. Gates^e, H. W. Kugel^e, R. Kaita^e, B. P. LeBlanc^e, J. Menard^e, S. F. Paul^e, G. D. Porter^a, M. Rensink^a, A. L. Roquemore^d, D. P. Stotler^d, N. Wolf^a, and NSTX Research Team

^a Lawrence Livermore National Laboratory, Livermore, CA
 ^b Oak Ridge National Laboratory, Oak Ridge, TN
 ^cUniversity of California at San Diego, LaJolla, CA
 ^d University of Washington, Seattle, WA
 ^ePrinceton Plasma Physics Laboratory, Princeton, NJ

Poster JP1.032 46th Annual Meeting of the Division of Plasma Physics November 15-19, 2004 Savannah, GA

Abstract

The identification of divertor regimes is a starting point for the deuterium and carbon particle balance analysis and understanding of low aspect ratio geometry implications for edge radial and parallel transport in NSTX. Main chamber and divertor recycling, impurity, radiated power, heat flux, temperature, density and neutral pressure measurements in NBI heated lower single null and double null discharges with elongation ranging from 1.8 to 2.5, input power from 1.8 to 7 MW, ne(0) = $(2.5-8) \times 10^{19} \text{ m}^{-3}$, and D₂ feed rate up to 8 × 10²¹ s⁻¹ will be presented. Volume recombination signatures from D, D profiles and Stark-broadened high n Balmer series transitions, as well as the measured heat flux under 1 MW/ m^2 and recycling dynamics in ELMy Hmode plasmas suggest that the inner divertor is detached. The outer divertor is in the sheath-limited and high-recycling regimes. Predictions of the analytical two point model and the UEDGE multi-fluid code will be compared to the data. The implications of the divertor regimes for carbon production and core fueling in NSTX will be discussed.

This research is supported by the U.S. Department of Energy under contracts No. W-7405-Eng-48 at LLNL and DE-AC02-76CH03073 at PPPL.

Analyze SOL / divertor properties in ST plasmas

• NSTX has made significant progress toward high performance plasmas:

 τ_{pulse} = several τ_E , β_T up to 40 %, routine H-mode access

- Analyze ST effects in SOL / divertor as well as divertor geometry effects
- Document SOL / divertor conditions, compare to tokamaks, 2D codes
- Develop radiative divertor regime compatible with high performance H-mode plasmas
- Analyze SOL / divertor properties in plasmas with two common magnetic equilibria:
 - PF2L shape H-mode physics (access, threshold), transport
 - **PF1B** shape high β high performance long pulse, transport and H-mode
- NSTX has developed sustained high elongation high triangularity H-mode plasmas scenarios (D. Gates oral CO3.002)

• Higher elongation leads to longer pulse length ($I_{bootstrap}$ higher), higher β , broader operational space

SOL / divertor diagnostics improved in FY'04

Pressure gauges

• **IRTV**: two Indigo Alpha 160 x 128 pixel microbolometer cameras, 7-13 μm range, 30 ms frame rate

• \mathbf{D}_{α} , \mathbf{D}_{ν} , **C III filtered cameras**: four Dalsa 1 x 2048 pixel CCDs, filter FWHM 10-15 A, frame rate 0.2 - 1 ms

• Neutral pressure gauges: four microion gauges on top and at midplane, two Penning gauges in lower and upper divertor, time response 5-10 ms

• High-resolution spectrometer ("VIPS 2"): ARC Spectro-Pro 500i, three input fibers (channels), time response 15-30 ms, FWHM > 0.6 A

• **Bolometry**: midplane (AXUV radiometer array), divertor - ASDEX-type four channel bolometer, time response 20 ms

• Langmuir probes: midplane - fast probe, tile

LPs - I_{sat} , T_e measurements

ST effects in SOL and divertor may lead to different physics

- High SOL mirror ratio M=IB_{min}I / IB_{max}I affects connection Magnetic Surface length L_{II} , fraction of trapped particles f, etc Magnetic Field Line
- Large flux expansion ratio $f = \frac{(B_{\theta} / B)_u}{(B_{\theta} / B)_t}$: Heat and particle in-out asymmetries

 - Parallel transport, divertor regimes
- Compact divertor divertor volume, PFC area. Tokamak (safety factor q = 4)In NSTX $P_{in}/R = 8$ MW/ 0.85 m = 9.5

Stable

Unstable

Spherical To

(safety factor q =

Plasma shapes obtained with PF2L and PF1B divertor coils dominate operational space

0.4

0.2

1.5

2.0

Elongation

3.0

2.5

 Because of diagnostic constraints only LSN divertor can be studied at present

 Properties of DN divertor will be studied in FY'05 -FY'06

q_{\parallel} profiles are different in PF2L and PF1B shapes

In PF2L plasmas:

- Heat flux increases non-linearly with P_{in}
- $q_{in}/q_{out} = 2-3$
- Heat flux equilibration time $\tau_{eq} \sim 100 \text{ ms}$
- \bullet Power accountability: up to 70 % of $\mathsf{P}_{\mathsf{NBI}}$ measured in divertor
- Divertor heat flux independent of gas injection location

Divertor P_{rad} is similar in PF2L and PF1B shapes

- Analyses is based on plasma emissivity estimate from divertor bolometers
- Effective divertor volume in PF2L shape is 3-5 higher than in PF1B
- Accurate comparison and power accounting is only possible through 2D modeling
- Power balance studies in NSTX S. F. Paul et. al., Poster JP1.010

Divertor neutral pressure is high

- High pressure measured in divertor and mid-plane
- Measurements are not conduction limited
- In PF1B shots, pressure mesured in outer SOL; in PF2L shots, pressure is measured in PFZ
- Compression ratio is 5-10 for PF1B shots
- Midplane pressure is similar in PF2L and PF1B
- Gas fueling similar for both types

Divertor D $_{\alpha}$ in-out asymmetry is high

- Recycling in PF2L and PF1B occurs in different div. regions
- Asymmetry is weakly dependent on R_{Xpt}
- Both inner and outer D_{α} brightness are line-av. n_{e} dependent

Divertor in-out asymmetries

- Heat flux asymmetry always $q_{out}/q_{in} > 1$, consistent with
 - SOL area factor: $A_{out} > A_{in}$
 - Magnetic flux expansion factor (mid/div): $f_{in} > f_{out}$
- D_{α} asymmetry (particle flux / recycling) is observed through most of op. space
 - Density and power dependent
 - Not always correlated with volume recombination onset
 - Complex interplay of cold dense detached plasma and diagnostic geometry effects?
 - Analysis in progress to address radiation opacity effects

(A. Pigarov et. al. Poster JP1.027)

Inner divertor is cold / detached in PF1B shots

Appearance of Stark broadened high n Balmer series lines indicate:

- Volume recombination
- Apparently high n_e , n_0 , low T_e
- Possibly optically thick

- Similar divertor behavior in L- and H-mode plasmas with $P_{NBI} < 6$ MW.
- Inner divertor is cold, often detached
- Heat flux $q < 1 \text{ MW/m}^2$

• Sign of detachment: observed volume recombination (D_{γ}/D_{α} ratio increases), P_{rad} increase

Inner divertor cold / detached in PF2L shots

ISTX=

Stark broadening of Balmer lines yelds high n_e

- Do not observe photorecombination continuum edge probably due to high core bremstralung background
- FWHM increases with n, Voigt line profile shape
- Inglis-Teller limit for n=11 yeilds n_e =10¹⁵ cm⁻³ (too high!)
- Analysis with CRETIN in progress

Outer divertor is in linear and high recy. regime

• Outer divertor is always attached, heat flux $q < 10 \text{ MW/m}^2$

Outer divertor is in sheath-limited and high-recycle regime

- Uncertainty in LCFS position undermines analysis:
 - MPTS midplane $T_e = 5 40 \text{ eV} (5 15 \text{ eV} \text{ or } 20 40 \text{ eV}?)$
 - Fast probe midplane $T_e = 10 30 \text{ eV}$
 - SOL collisionality $v^* = 0.5 100$ (mostly 10 60)
- Divertor $T_e = 5 40 \text{ eV}$

• If midplane $T_e = 5 - 15 \text{ eV}$ then the very weak dT_e/dx_{\parallel} poses questions about heat flux measurements, e-i partition and the heat transport mechanism

- Carbon radiation zone is 10 eV
- Difficult experimental issue

LP outer divertor data - C. Bush (ORNL)

Flat T_e, n_e in outer midplane SOL in PF2L shots

V. A. Soukhanovskii, APS DPP 2004, Savanah, GA 16 of 22

Divertor detachment experiment started

- Used PF2L shape, 4 MW NBI L-mode at $B_t = 0.3$ T
- Injected D₂ in LFS midplane and PFZ regions at 20 120 Torr I / s
- Concluded inner divertor detachment from D_{γ}/D_{α} ratio
- Inner divertor detachment threshold in $< n_e >$, P_{in} is low
- No sign of volume recombination (D $_{\gamma}$) in outer divertor even at 120 Torr I / s, $n_e = 4 \times 10^{19} \, m^{-3}$

UEDGE detachment space is close to the observed

- H-mode LSN equilibrium used
- UEDGE diffusive transport model
- Impurities included
- Outer n_e , T_e profiles matched, D α and IRTV not matched
- For guiding purposes only

2PM suggests detachment of inner divertor

$$2 n_t T_t = n_u T_u$$

$$T_u^{7/2} = T_t^{7/2} + \frac{7}{2} \frac{q_{\parallel} L_c}{\kappa_0}$$

$$q_{\parallel} = \gamma n_t T_t c_{St}$$

SOL response to ELMs

- Attached inner divertor D_{α} always lags behind outer divertor D_{α} by 200-400 μ s
- Analysis in progress look at many ELM arrival times at several locations (\bigcirc), develop self-consistent picture (n_e , n_i , v^* , L_{II})
- ELM Type I propagates from outboard at $c_s = (T_{e,ped} + T_{i,ped})^{1/2}/m_i$

Divertor response to ELMs

• In ELMy H-modes:

- Inner divertor cold and dense, often detached

- Outer divertor always attached

• Type I ELM heat pulse burns through inner leg plasma and causes transient inner leg reattachment

- Type III, V ELMs do not change divertor state
- Need to correlate fast C III, D_{α} data with divertor and midplane probes

Summary

• Present analysis of heat and recycling fluxes in L- and H-mode plasmas suggests that the inner divertor operates in a detached state in $n_e > 2 - 3 \times 10^{19}$ m⁻³ (0.2 < $n_e/n_G < 0.9$), $P_{in} = 2 - 6$ MW LSN PF2L and PF1B plasmas, whereas the outer divertor is always attached

• The outer divertor is in the sheath-limited (linear) and flux-limited (high recy. regime) regime

• Inner divertor transiently re-attaches when Type I and Type III ELMs reach the divertor, and shows resiliency to Type V (small) ELMs

- Stationary heat loads up to 10 MW/m² measured in outer divertor, and about 1 MW/m² in inner divertor
- High in-out D_{α} asymmetry is observed as a result of complex interplay of proximity of vertical CS wall, cold dense recombining plasmas and opacity effects
- High neutral pressure is measured in divertor, divertor compression is 5 -10

MARFEs are often observed on inboard side

NSTX reference data

NSTX eng. and plasma parameters

R = 0.85 m, a = 0.67 m, A = R/a > 1.27 P_{NBI} < 7 MW, P_{HHFW} < 6 MW

NSTX fueling

• Gas injection: low field side (LFS, top + side) and high field side (HFS, midplane + shoulder). D_2 , He, injected at S = 20 - 150 Torr I /s.

- Neutral beam injection system: three beams, 80 100 keV, 6 MW, fueling rate: S < 4 Torr I / s
- Supersonic gas injection (near future) S = 30 150 Torr I / s

NSTX wall conditioning

- Between shots He GDC, He conditioning plasmas
- TMB and Plasma TMB

NSTX pumping

- Turbomolecular pump (3400 l / s)
- NBI cryopump (50000 I / s, in NBI plasmas only)
- Conditioned walls

PFC

- ATJ graphite tiles on divertor and passive plates
- ATJ and CFC tiles on center stack
- Thickness 1" and 2"

	Aspect ratio A	1.27
	Elongation κ	2.5
	Triangularity δ	0.8
	Major radius R ₀	0.85m
	Plasma Current I _p	1.5MA
	Toroidal Field B _{T0}	0.6T
	Pulse Length	1s
	Auxiliary heating:	
	NBI (100kV)	7 MW
	RF (30MHz)	6 MW
2	Central temperature	1 – 3 keV

