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Gyrokinetic PIC Simulations of Neoclassical Transport

• GTC-Neo: δf global Gyrokinetic PIC Code

[Wang et al., Comput. Phys. Commun. (2004); Phys. of Plasmas (2006)]

• Calculates neoclassical fluxes, Er, jb, etc

• Nonlocal physics due to large ion orbits

• Two species now: ions + electrons

• Momentum, energy and particle number conserving collisions

• Interfaced with MHD equilibrium codes and TRANSP data base

• Rigorously benchmarked against standard neoclassical theory
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GTC Turbulence Simulations Show That ITG Modes
Have Low Contribution to Energy Transport
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• – simulation radial domain: 0.2 ≤ r ≤ 1.0; – adiabatic electrons;

– equilibrium E×B shear flow not included; – ion-ion collisions included

• ITG turbulence has significant fluctuation amplitude, but drives small ion

energy transport in NSTX plasma (sometimes below neoclassical level)!
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GTC Simulations Show that ITG Modes
Are Relevant for DIIID, But Not for NSTX
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• In contrast, in DIIID plasma, ITG turbulence can drive large transport

(×10 neoclassical level)
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ITG Modes Drive Significant Potential Fluctuations
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• Turbulence fluctuation levels for two machines are actually comparable

eδφ/Ti < 1%
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Mixed Scaling between ITG and Neoclassical Transport
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• Measured at locations around maximum R0/LTi
:

qITG
i

qNC
i

=
χITG

i

χNC
i

∝
γITG

νii

?

• To compare neoclassical and turbulent transport, we may need to discuss

them using a unified language
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Transport Nonlocality due to Turbulence Spreading

10-7

10-6

10-5

10-4

0.2 0.4 0.6 0.8 1

tu
rb

ul
en

ce
 in

te
ns

ity
 <

δΦ
2 >

r

t=200

300

360

420

480

540

600
NSTX -116960a05 t=0.3s

1

3

5

7

9

0 0.2 0.4 0.6 0.8 1

q

r

NSTX-116960

0 100

1 104

2 104

3 104

4 104

400 800 1200

io
n 

he
at

 fl
ux

time

nonlinear spreading

linear growth

r/a=0.62

• Spreading in outward direc-

tion is more significant

• The reversed magnetic shear

in the inner side may provide

a stronger damping
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ITG Turbulence Spectral in NSTX Plasma
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Effect of Coulomb Collisions

0 100

4 103

8 103

400 800 1200

io
n 

he
at

 fl
ux

 (
W

/m
2 )

time

r/a=0.64 

with i-i collisions

w/o i-i collisions

• Linear ion-ion collisions:

Cl
ii(δf) = C(δf, f0) + C(f0, δf)

(drag & diffusion) (effect of perturbed field particles, neglected)

• Collisions enhance ITG driven ion heat flux, but not significantly

• It may expect more sensitive dependence on collisions in marginal

instability regime
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Effect of Equilibrium E×B Shear Flows
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• Equilibrium radial electric field is determined by neoclassical dynamics

and calculated by GTC-Neo consistently

• ITG is stabilized when equilibrium E×B shear flow is included
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Fluctuation Spectrum Shift due to
Applied Equilibrium E×B Flow
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Global ETG Simulation for NSTX Discharge
Is a Huge Computational Challenge

• Motivated by recent results of high-k measurements in NSTX experiments

• Huge number of grid point needed in poloidal direction due to strongly

nonuniform geometry

• Number of grid point: 1000(radial)× 100000(poloidal)

(compared to typical flux-tube simulation: 256× 256)

• Size of ETG simulation of NSTX experiment is 2 ∼ 3 order of magnitude

larger than that of ITG (computationally impractical!)
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Ongoing Investigations

• Effects of trapped electrons on NSTX turbulence transport

– trapped electron enhancement of ITG driven ion energy transport

– TEM turbulence driven transport
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Summary

Global gyrokinetic PIC simulations have been applied to analysis both

turbulent and neoclassical transport properties for NSTX experiments

• In NSTX plasmas, ITG driven ion energy transport is of neoclassical level.

• In contrast, for DIIID discharges, ITG turbulence is shown to drive large

transport (×10 neoclassical level).

• Turbulence fluctuation levels for two machines are actually comparable

(∼ eδΦ/Ti < 1%).

• A mixed transport scaling (?)

qITG
i

qNC
i
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i

χNC
i

∝
γITG

νii

• Self-consistent equilibrium E×B flows can strongly stabilize ITG.

• Effect of collisions is weak.
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Gyrokinetic PIC Simulations of Turbulent Transport

• General Geometry GTC: generalized gyrokinetic simulation model

implemented based on GTC [Lin et al, Science (1998)] architecture

[Wang et al., Phys. of Plasmas (2006)]

• Shaped cross-section; experimental profiles; consistent rotation and

equilibrium E×B flow; linear Coulomb collisions; · · ·

• Interfaced with MHD equilibrium codes and TRANSP data base

• Carefully benchmarked in simple geometry limit
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