National Spherical Torus Experiment Facilities and Select Science Topical Areas

College W&M Colorado Sch Mines Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL **PPPL PSI** Princeton U SNL Think Tank. Inc. **UC Davis UC** Irvine **UCLA UCSD**

U Colorado

U Maryland

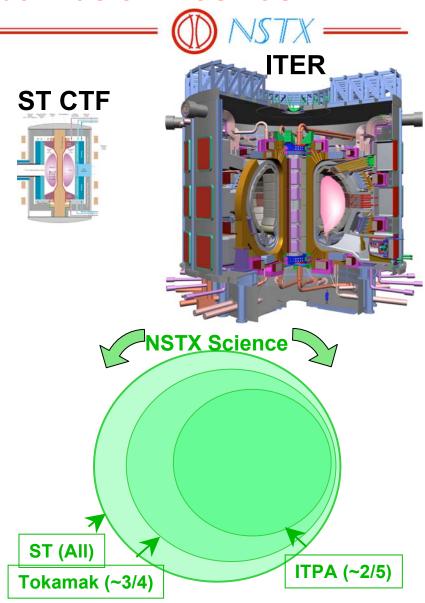
U Rochester

U Wisconsin

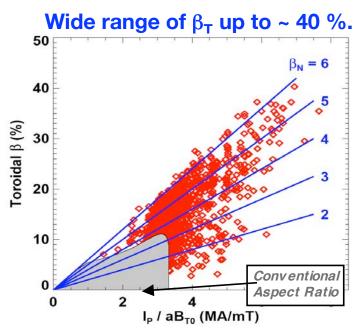
U Washington

Masayuki Ono For the NSTX Research Team

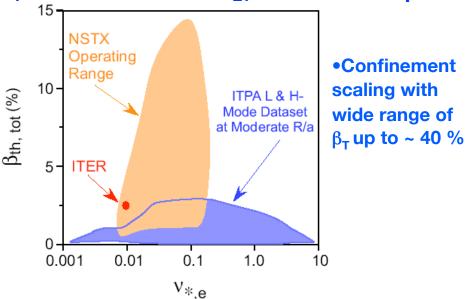
2006 48th DPP Americal Physics Society Meeting


October 30 - November 3, 2006 Philadelphia, Pennsylvania

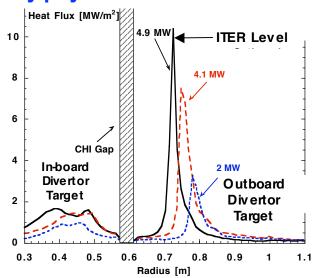
Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo **JAERI** Hebrew U Ioffe Inst **RRC Kurchatov** Inst TRINITI **KBSI** KAIST ENEA, Frascati CEA. Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep

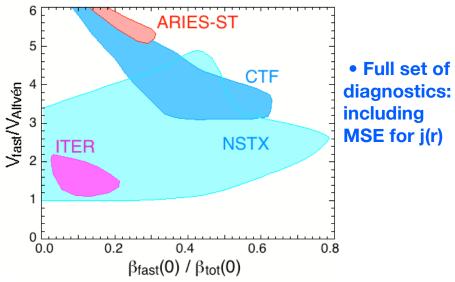

NSTX Strategy to Address Scientific Issues Important for ST-CTF, ITER, and Toroidal Fusion Plasmas

- Explore physics of Spherical Torus / Spherical Tokamak to provide basis for attractive U.S. Component Test Facility (CTF) and Demo.
- Support preparation for burning plasma research in ITER using physics breadth provided by ST; support and benefit from "ITPA Specific" activities.
- Complement and extend tokamak physics experiments, maximizing synergy in investigating key scientific issues of toroidal fusion plasmas

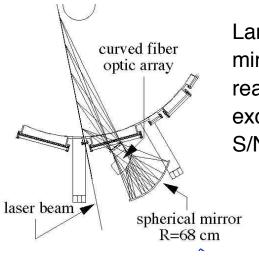


NSTX/ST Offers Access to Wide Tokamak Plasma Regimes

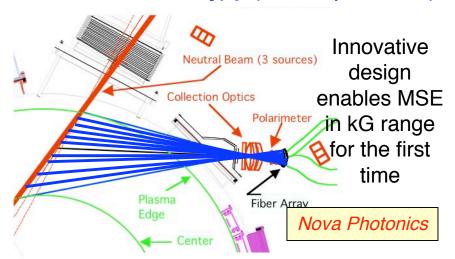



β Confinement Scaling, Electron Transport

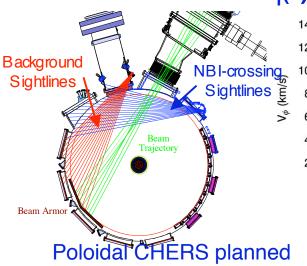
Boundary physics with ITER-level heat flux

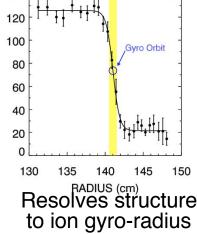


Unique Energetic Particle Physics Capability

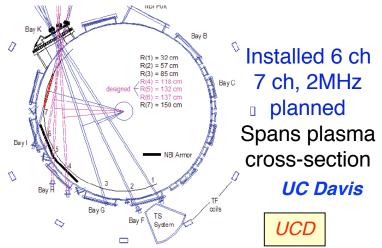

State-of-the-Art Profile Diagnostics with Excellent Tangential Access Enable In-depth Research

30 Ch, 60Hz MPTS for $T_e(r)$, $n_e(r)$

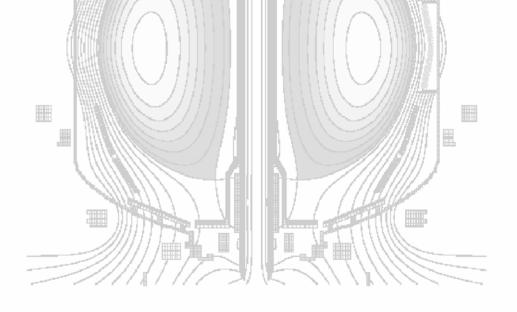


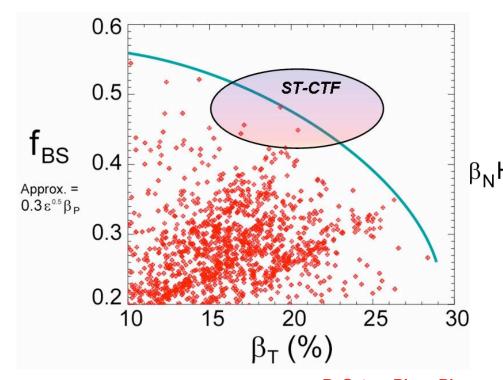

Large collection mirror and low readout noise gives exceptionally high S/N ratio

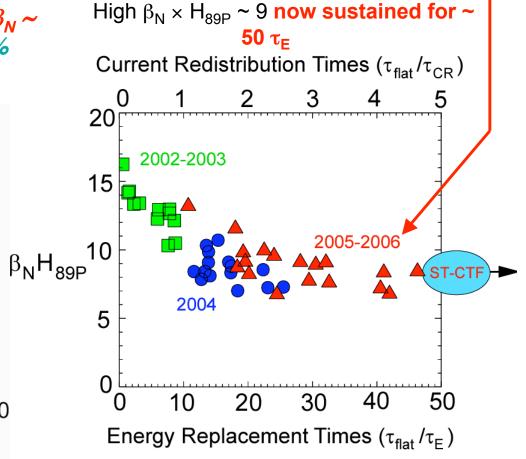
12 Ch MSE for q(r) (19 ch planned)



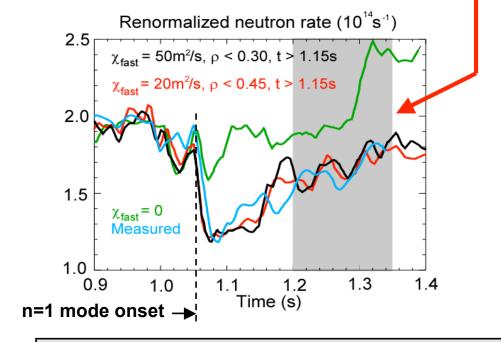
51 Ch CHERS for $T_i(r)$, $V_{\phi}(r)$


Tangential FIR Int-Pol (600 kHz)

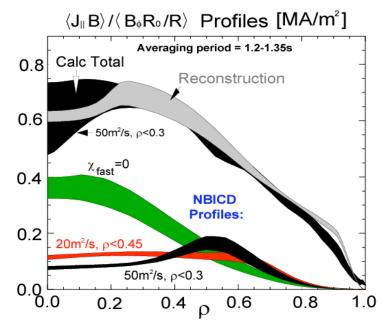

Steady-state High-performance Scenarios


High performance can be sustained for several current redistribution times at high non-inductive current fraction

ST-CTF goal: neutron flux = 1-4MW/m² $A=1.5, \ \kappa=3, \ R_0=1.2m, \ I_p=8-12MA, \ \beta_N\sim5, \ HH=1.3, \ \beta_T=15-25\%, \ f_{BS}=45-50\%$

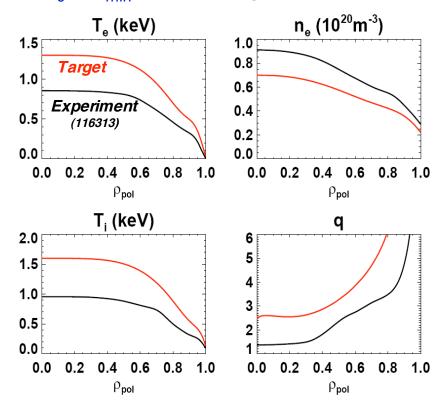

∇p and NBI current drive provide up to 65% of plasma current →

D. Gates, Phys. Plasmas 13, 056122 (2006)

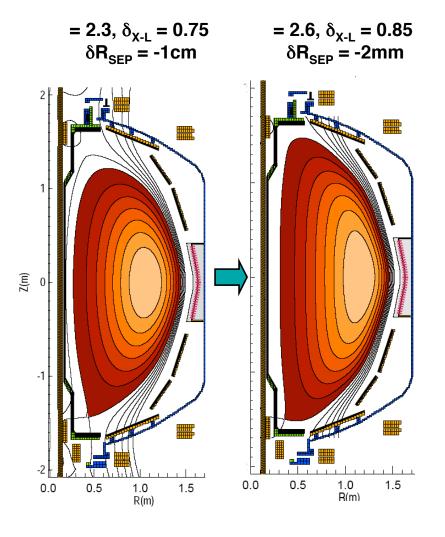

Mode-induced fast ion diffusion needed to explain neutron rate and $J_{||}(\rho)$ evolution during late n=1 interchange activity

- High core-localized anomalous fast ion diffusion can account for neutron rate deficit
- Core δB from mode estimated to be 100's of Gauss → large χ_{fast}

- Diffusion of fast ions can convert centrally peaked J_{NBI} to flat or hollow profile
- Redistribution of NBICD makes predictions consistent with MSE


MHD-induced NBICD diffusion may contribute to "hybrid" scenarios proposed for ITER

Fully non-inductive scenario requires higher confinement, higher q, strong plasma shaping



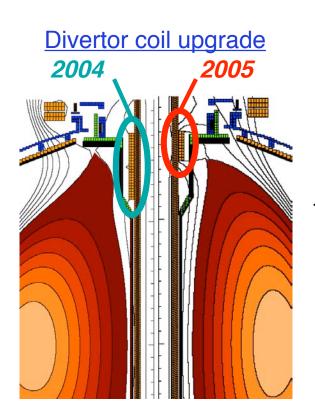
Need 60% increase in T, 25% decrease in n_e Lithium for higher τ_E & density control? 20% increase in thermal confinement 30% increase in HH_{98} Core HHFW heating

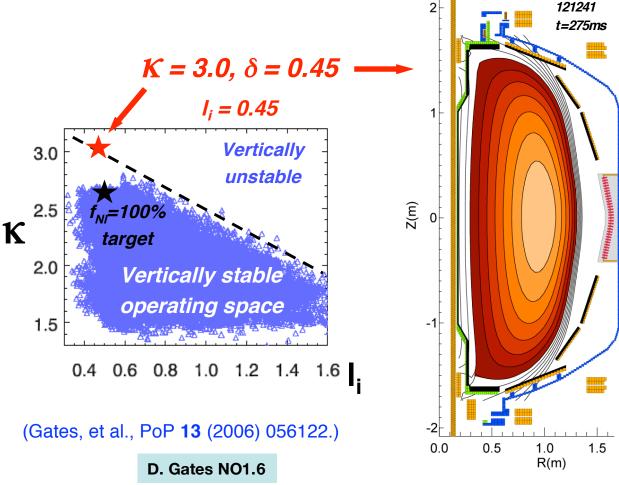
Want $q_0 \approx q_{min} \approx 2.4 \Rightarrow$ higher with-wall limit

Higher κ for higher q, β_P , f_{BS} High δ for improved kink stability

Macrostability (MHD)

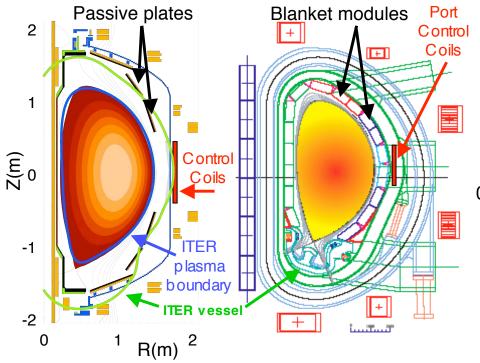
Low-Aspect-Ratio, High β Provides High Leverage to Uncover Key Tokamak Physics (e.g., RWM Control, Rotation Damping, High Elongation)

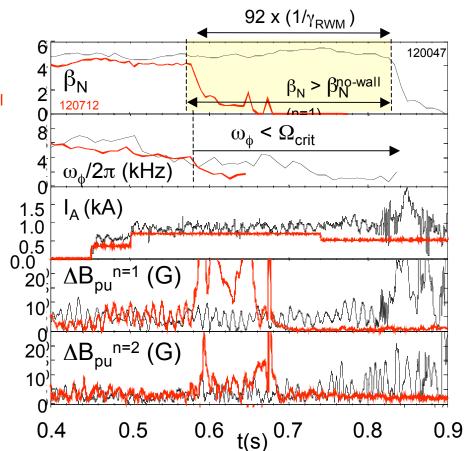



Extreme Elongation at Low I_i Opens Possibility of Higher β_P , f_{BS} Operation at High β_T

GA

- Sustained $\kappa \ge 2.8$ for many τ_{WALL} using rtEFIT isoflux control
 - Allowed by divertor coil upgrade in 2005, <u>no</u> in-vessel vertical position control coils
- High κ research important for CTF and Advanced Tokamaks



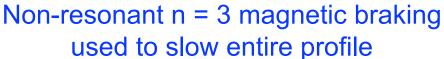


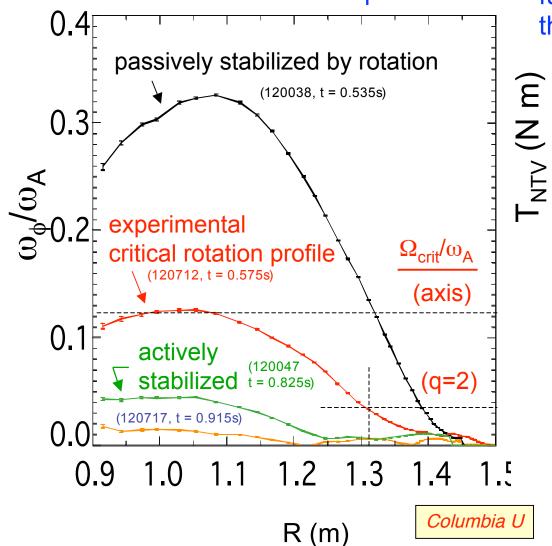
Low aspect ratio, high β provides high leverage to uncover key tokamak physics (e.g. RWM control, rotation damping, high elongation)

NSTX / ITER RWM control

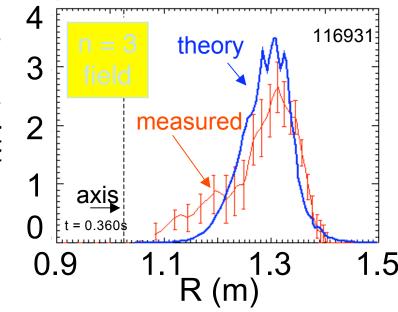
Addressing relevant physics for ITER, CTF, KSTAR

RWM actively stabilized at ITER-relevant rotation for $\sim 90/\gamma_{RWM}$


(Sabbagh, et al., PRL 97 (2006) 045004)

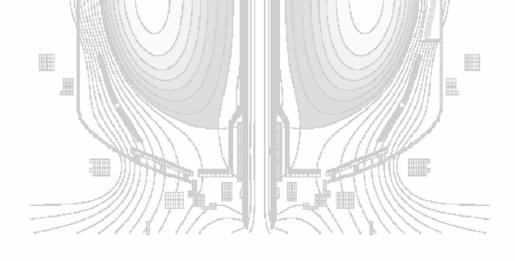

Columbia U

S. Sabbagh VI2.1, D. Mueller QP1.4


Rotation reduced far below RWM critical rotation profile

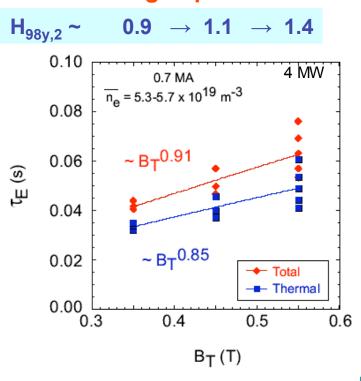
<u>First</u> quantitative agreement with full neoclassical toroidal viscosity theory

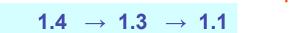
Viable physics for simulations of plasma rotation in future devices (ITER, CTF, KSTAR)


(Zhu, et al., PRL **96** (2006) 225002.) Columbia U. thesis dissertation

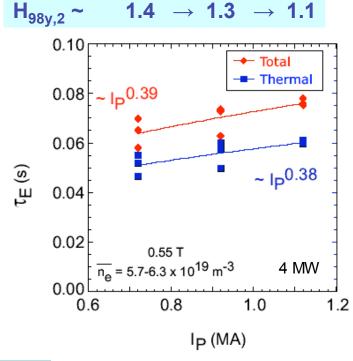
A. Sontag NO1.8

Transport and Confinement


Measuring Transport and Associated Fluctuations to Gain Understanding of Electron Energy Transport



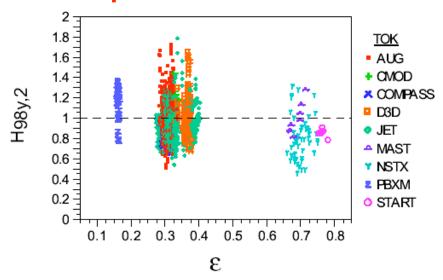
Dedicated H-mode Confinement Scaling Experiments Have Revealed Some Surprises



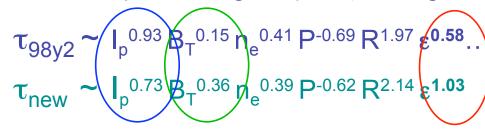
Strong dependence on B_T

Weaker dependence on I_p

(Kaye et al. NF 46 [2006] 848) $\tau_{\rm E,98y,2} \sim {\rm B_T}^{0.15}$

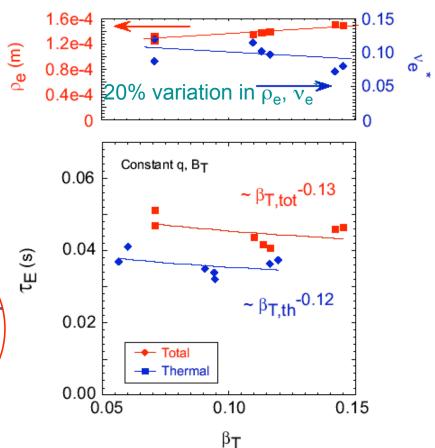

$$\tau_{\rm E,98y,2} \sim I_{\rm p}^{-0.93}$$

$$\tau_{\text{E}} \sim I_{\text{p}}^{1.3\text{-}1.5}$$
 at fixed q $\tau_{\text{E},98y,2} \sim I_{\text{p}}^{1.1}$ at fixed q


NSTX Addressing High-Priority ITPA Tasks in Confinement

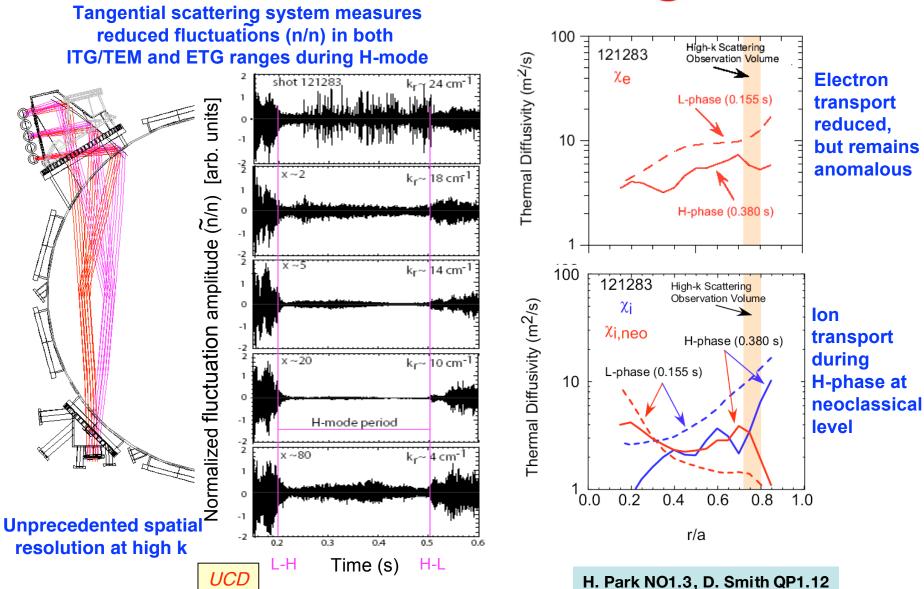
ITER98PB(y,2) scaling deviates from experimental data at low A

NSTX data used in conjunction with ITPA database implies stronger ε (=a/R) scaling



[Kaye et al., PPCF 48 (2006) A429]

S. Kaye QP1.8


Scan β by factor 2–2.5 at fixed ρ_e , ν_e^*

- β-dependence important to ITER advanced scenarios ($B\tau_{98v2}\sim\beta^{-0.9}$)
- Weak degradation of τ_{E} with β on NSTX

Detailed Transport and Turbulence Measurements during L-H Transition Reveals Important and Tantalizing Electron Transport Physics

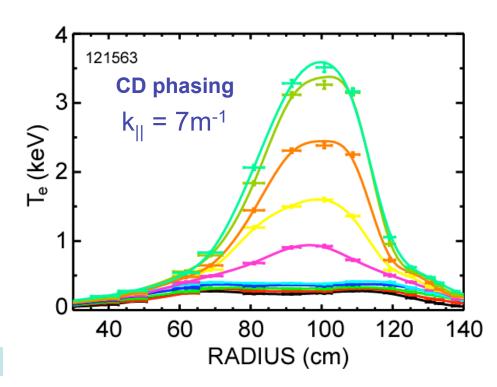
HHFW and EBW

Understanding HHFW Coupling Physics and Developing EBW CD for Profile Control for Advanced Operations

Solenoid-free Start-up

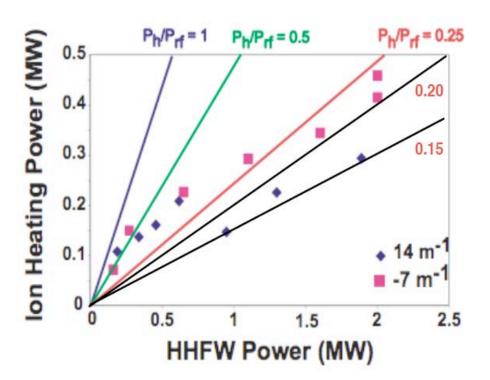
For Attractive ST-CTF and Fusion Reactors

Energetic Particles


α-Particle Driven Instabilities and Associated Transport is a Critical Issue for ITER and Reactors

HHFW Heating Efficiency Improved with B_T

- NSTX High-Harmonic Fast Wave (HHFW) heating and current drive research utilizes world's most sophisticated ICRF launcher:
- 12 strap antenna, 6MW capability
- 6 independent transmitters
- Real-time control of launched k_{||} from 0 to 14m⁻¹
- Achieved high T_e =3.6keV (nearly double the previous value) in current drive phasing for first time at B_T = 5.5kG
- Higher B_T and k_{||} improved HHFW core electron heating reduced edge parasitic loading

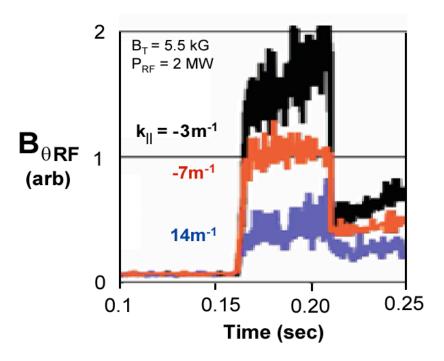

J. Hosea NO1.11, C.K. Phillips QP1.24

Improved Understanding of HHFW Edge Interactions Leads to More Efficient Heating & CD

Parametric Decay Instability (PDI) of HHFW → IBW → edge ion heating

PDI increases with lower $k_{||}$ and/or B_T Low $k_{||}$ used for HHFW current drive Low B_T needed for high β

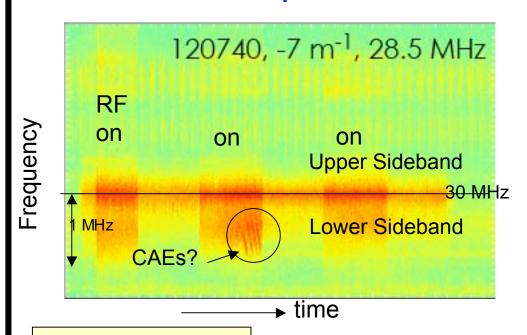
Edge 17.5 GHz Wave Reflectometer also shows phase dependence of PDI



T. Biewer, Phys. Plasmas 12, 056108 (2005)

Surface and Core HHWF Fluctuations Measured

Surface Wave Probe Data

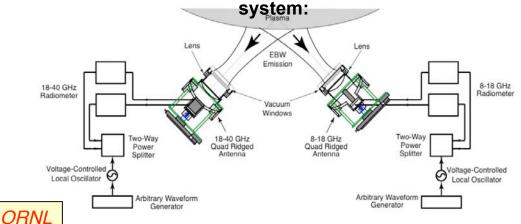


HHFW at low k_{||} should begin propagating at much lower n_e

→ surface waves, wall interactions
dB/dt probe data consistent with lower
edge wave amplitude at high k_{||}

New 47 Gz Wave Reflectometry Measurements on the HHFW fluctuations in the plasma core

- Broad turbulence spectrum
- Typically asymmetric
- Coherent chirps



UCLA, Tokyo University

S. Kubota QP1.11

Initial measurements of B-X-O emission on NSTX confirm possibility of high-power coupling to EBW

Dual-antenna remotely-steerable EBW radiometer

Frequency range:

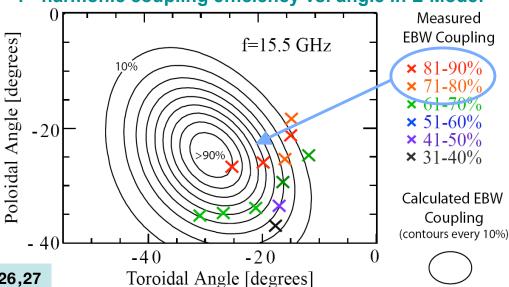
1st & 2nd harmonic: 8-18GHz

2nd & 3rd: 18-40 GHz

Directionality:

±10° steering in poloidal and toroidal directions

Antenna acceptance angles:


8-18GHz ~ 22°, 18-40GHz ~ 14°

High EBW coupling efficiency for broad range of antenna pointing angles in L-mode

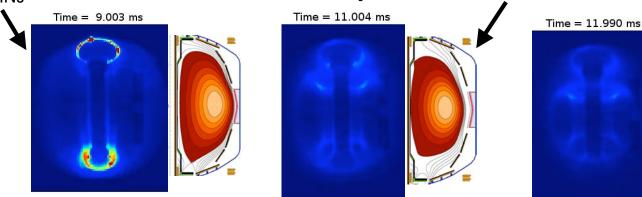
G. Taylor, Phys. Plasmas 12 052511 (2005)

But, poor apparent coupling efficiency (< 30%) observed in H-mode discharges

1st harmonic coupling efficiency vs. angle in L-Mode:


S. Diem NO1.12, G. Taylor, A. Ram, J. Urban QP1.25,26,27

Coaxial Helicity Injection has convincingly demonstrated the formation of closed poloidal flux at high plasma current

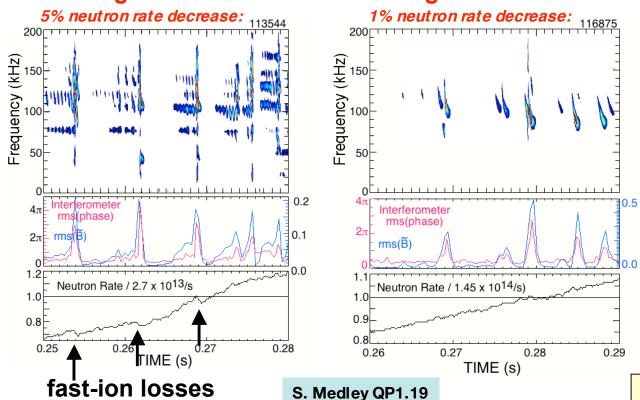

MNSTX

Evidence for high-Ip flux closure:

- 1. $I_P = 160 \text{kA}$ remains after CHI injector current $I_{CHI} \rightarrow 0$ at t=9ms
- 2. After t=9ms, plasma current decays away inductively

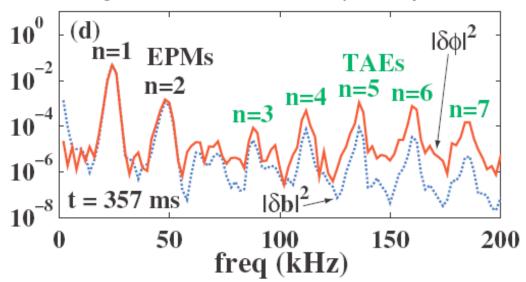
3. Once $I_{IN,I} \rightarrow 0$, reconstructions track dynamics of detachment & decay

Clear Effect of Multi-Modes Observed for Super-Alfvénic, Fast Ion Population

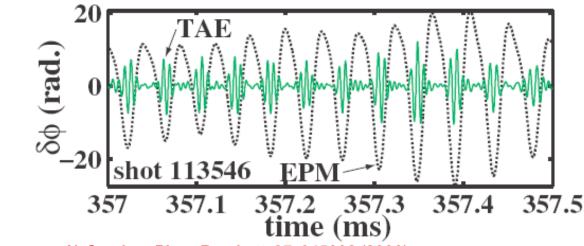

(I) NSTX

UCI. UCLA

ITER will operate in multi-modes regime for fast ion transport


- k_⊥ρ ≈ 1 means "short" wavelength Alfvén modes
- Fast ion transport expected from <u>interaction of many modes</u>
- NSTX can study multi-mode regime while measuring MSE q profile

NSTX observes that multi-mode TAE bursts induce larger fast-ion losses than single-mode bursts:

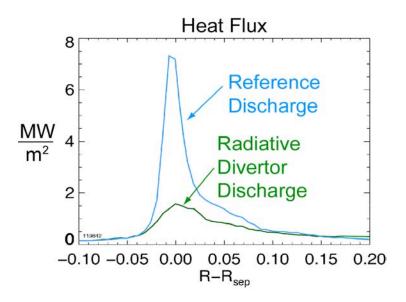

Reflectometry Data Reveals 3-wave Coupling of Distinct Fast-Ion Instabilities for First Time

Low-f Energetic Particle Modes (EPMs) co-exist with mid-f TAE modes

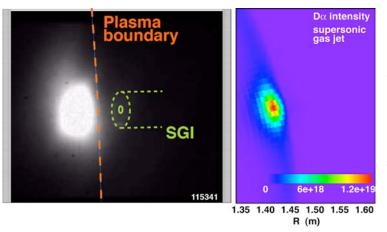
Bi-coherence analysis reveals 3-wave coupling between

1 EPM and 2 TAE modes

 Large EPM → TAE phase locks to EPM
 forming toroidally localized wave-packet


N. Crocker, Phys. Rev. Lett. 97, 045002 (2006)

Reduced Peak Heat Flux by Radiative Divertor and Utility of Supersonic Gas Injector for H-mode Access



Developed Radiative
Divertor regime: Obtained by
steady-state D₂ injection into
private flux region or ISP

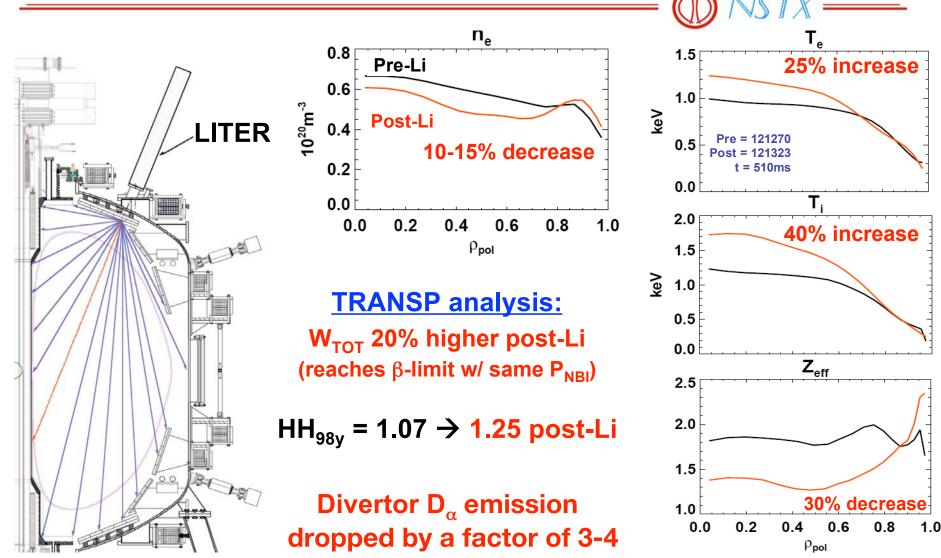
- Outer SP (OSP) heat flux reduced by 4-5
- No change in H-mode τ_E

Supersonic Gas Injector (SGI) achieved up to 5 x higher fueling efficiency relative to standard low-field-side gas puff

DEGAS 2 Neutral transport modeling reproduces observed features

- H-mode scenarios:
 - -SGI changes ELMs from mixed ELM regime (Type I+V) to Type III
 - SGI can replace HFS injector used for H-mode access while providing flow control
- GOAL: Increasing the SGI gas pressure, Combine Li & SGI for n_e control

LLNL


NSTX studying access conditions and structure of different ELM types

Small shape change leads to reduction of ELM size Large ELM Balanced DN or biased slightly up Biased slightly down #117425 #117424 I_P [MA] P_{NBI}/10 [MW] P_{NBI}/10 [MW] ners [1019 m-3] **Small ELM** Large ELMs Small ELMs $\mathbf{D}_{lpha}\left[\mathsf{au}
ight]$ $\mathbf{D}_{lpha}\left[\mathsf{au}
ight]$ H97L 197L 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 0.0 0.0 Time [sec] Time [sec]

ORNL, Nova Photonics, Johns Hopkins, UCD

Maingi, POP 2006

In 2006, Lithium Evaporator (LITER) Experiments Improved Particle Pumping and Energy Confinement in H-mode

• L-mode exhibits even larger (20-25%) relative density decrease

D. Mansfield, H. Kugel QP1.5-6, M. Bell NO1.2

NSTX Facility/Diagnostic Improvements since 2005

Device Parameters

R = 85 cm

a = 65 cm [design]

 $\kappa = 1.7 - 3.0^*$ [< 2.2]

 $\delta = 0.3 - 0.8$ [< 0.55]

 $B_{T} = 5.5 \text{ kG}$

 $I_p = 1.5 \text{ MA} [1.0 \text{ MA}]$

 $V_p = 14 \text{ m}^3 \text{ [12 m]}$

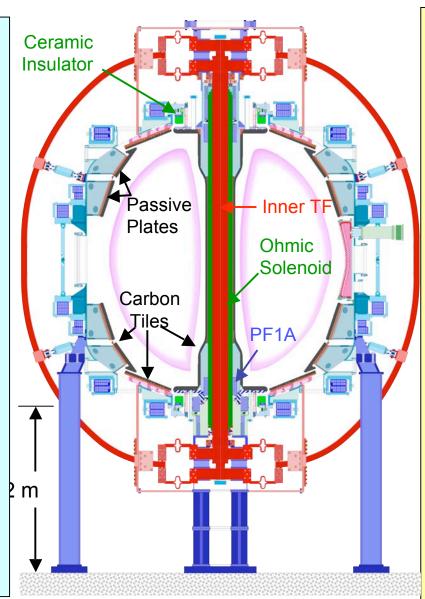
 $E_{\rm p} \sim 430 \text{ kJ}$ [200 kJ]

 $P_{NBI} = 7.4 \text{ MW } [5MW]$

 $P_{HHEW} = 6 MW$

350°C bakeout

Passive Plates


Active EF/ RWM Feedback*

 $I_{CHI} \sim 160 \text{ kA } (I_{ini}=0)^{**}$

Lithium Evaporator

Wide tang. Access

RED - Since 2005

Major Diagnostic Systems -

Confinement Studies-RED - Since 2005

Magnetic equiplibrium reconstruction Diamagnetic flux measurement Multi-pulse Thomson scattering (30 ch) CHERS: T_i(R) and V_a(r) (51 ch) Neutal particle analyzer (2D scanning)

Density Interferometer (1 mm, 1ch)
Visible bremsstrahlung radiometer (1 ch)
Midplane tangential bolometer array

X-ray crystal spectrometer: T_i(0), T_e(0) Multi-color USXR fast Te(r) MSE-CIF (12h)

MHD/Fluctuation/Waves

High-n and high-frequency Mirnov arrays

Ultra-soft x-ray arrays – tomography (4)
Fast X-ray tangential camera (2μs)
RF/TAE Wave reflectometers (edge/core)

FIRETIP polarimeter (6 ch, 600 kHz)

Tangential microwave scattering

Dual Electron B ernstein wave radiometer Fast lost-ion probe (energy/pitch)

Fast lost-ion probe (energy/pitch)

Locked-mode detectors

RWM sensors (n = 1, 2, and 3)

Edge/divertor studies

Reciprocating Langmuir probe Gas-puff Imaging (2µsec)

Fixed Langmuir probes (24)

Edge Rotation Diagnostics (T_i, V_b, V_{pol})
1-D CCD H_c cameras (divertor, midplane)

2-D divertor fast visible camera

Divertor bolometer (4 ch) IR cameras (30Hz) (3)

Tile temperature thermocouple array

Scrape-off layer reflectometer

Edge neutral pressure gauges

Plasma Monitoring

Fast visible cameras

Visible survey spectrometer

VUV survey spectrometer

X-ray transmission grating spect.

Fission chamber neutron measurement Visible filterscopes

Wall coupon analysis

Imaging X-ray crystal spect. (astrophys)

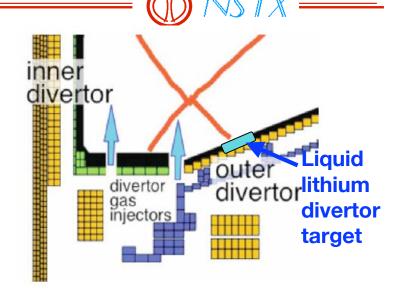
Planning medium power EBW/ECH upgrade

- Implement ~100 200 kW (15.3 28 GHz) EBW/ECH system for 2008 utilizing the existing ORNL equipment and the PPPL NBI power supply which can support 1.2 MW
 - Start EBW heating experiment
 - Heat CHI start-up plasma to ~50 100 eV enabling HHFW heating and CD
 - Assist PF-only start-up research

EBW/ECH Gyrotron source specification

- 28 GHz (4 ea.)
 - -200 kW CW

(80 kV, 7A)


- -350 kW pulsed
- ~ 500 ms

(80 kV, 12A)

- TE02 output; high mode purity
- FC-75 cooled window
- EBW/ECH upgrade may be feasible with priority shift within NSTX and through collaborations
- Continue to work with MAST, PEGASUS and other ST experiments on EBW Physics

Now Investigating Liquid Lithium Divertor Target to Control Density in Long-Pulse, High Performance Discharges

- Lithium pellet injection reduced oxygen and particle recycling 2005.
- Lithium evaporation implemented in 2006 reduced oxygen level and hydrogen recycling.
- Continue to explore benefits of these techniques in forthcoming 2007 run

- Based on NSTX results and other lithium experiments (CDX-U, T-11), a liquid lithium divertor target is indicated to achieve effective particle control for long-pulse, high performance advanced plasmas
- Use lithium-filled tray or lithium-wetted mesh or porous material
- The liquid lithium divertor target could replace one row of graphite tiles
 Major radius R ~ 60 cm so modification is not extensive
 - Design and R&D in FY 07
 - Installation in FY 08 to be ready for the 2008 9 run

NSTX Contributes Strongly to Fundamental Toroidal Confinement Science in Support of Future ST's and ITER

- Unique ST facility with powerful heating systems, advanced plasma control systems and state-of-the-art plasma diagnostics
- Wide range of accessible tokamak plasma parameters in MHD, T&T, Boundary, and Energetic Particle research supported by full diagnostic set
- Active EF/RWM feedback stabilization system demonstrated for a wide range of rotation speed including ITER relevant low rotation
- Unique opportunity for understanding electron transport and microturbulence with high-k (electron scale) scattering system
- Uniquely able to mimic ITER fast-ion instability drive with full diagnostics
- Steady progress is being made on HHFW and EBW physics
- Broad ITER and CTF-relevant boundary physics research program
- Rapid progress toward fully non-inductive high performance scenarios
- Solenoid-free 160kA closed-flux plasma formation in NSTX using CHI