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Neutral beam heated plasmas in NSTX exhibit a rich spectrum of fast-ion driven coherent modes
that includes fishbones as well as toroidicity-induced and compressional Alfvén eigenmodes (TAE and
CAE). These modes are of significant interest because they can induce fast-ion transport and
channel fast-ion energy into the plasma. In recent experiments, the spatial structure of fishbone
density perturbations has been investigated through the simultaneous application of a 288 GHz radial
interferometer and three fixed-frequency microwave reflectometers operated by UCLA, three
tangential far-infrared interferometers operated by UCD and an array of magnetic sensing coils
external to the plasma. The coils and the UCLA diagnostics have also been utilized in a similar
investigation of TAEs. The results may be compared with predictions from NOVA-K. Nonlinear
three-wave interactions between fishbones, TAEs and CAEs are also studied. These interactions
transfer energy in space and time and can significantly influence the effect of the modes on fast
ions.

*Supported by U.S. DoE Grants DE-FG03-99ER54527 and DE-AC02-76CH03073



Why study global modes excited by fast ions?

* Fast ions important in fusion plasmas

* produced by
* heating techniques: neutral beams, radio frequency power
« fusion products: alpha particles

» must be confined to heat plasma

* Fast-ion modes affect fast-ion transport

» modes may modify orbits
* redistribute fast ions = change heat deposition, force balance, etc.

* degrade fast-ion confinement



Summary of Results

 Three wave interactions between fast-ion modes observed for first time
* interaction across multiple scales: EPM—TAE, EPM—CAE, TAE—CAE

e fast-ion loss events influenced

* universal effect: wave-packet formation - lower frequency mode spatially concentrates energy
of higher frequency mode

* TAEs and EPMs structure measured - observed with array of diagnostics:

» multiple reflectometers = radial structure
* radial & tangential interferometers (EPMs only for tang. interf.) = constrain reconstruction

* toroidal array of Mirnov coils outside plasma = determine toroidal mode number

 TAE mode structure calculated by NOVA-K (linear stability code)

* calculation uses conditions similar to experiment - some refinement necessary

* future work - compare calculated TAE structure to measurements



Neutral beam heated plasmas in NSTX exhibit
rich spectrum of fast-ion modes

50 GHz Refl.; shot 113546  log,(d)  « Compressional Alfvén Eigenmodes
(CAE)

1000 S *0.4 to > 2 MHz
* natural plasma resonance
I* <« Toroidal Alfvén Eigenmodes (TAE)
AT | e « 40 - 200 kHz
1 THI ‘HHHHW‘ “*“‘”” * natural plasma resonance
IS o S ) T LT b 18
 Energetic Particle Modes (EPM)
i i 1 = + < 100 kHz

| 12 » mode defined by fast-ion parameters

230 9 time (ms) 400 » strong frequency chirping common



Fast-ion mode structure probed by internal
density fluctuation diagnostics

* Multiple reflectometers measure local density perturbation =
radial structure of mode (low field side)

« interpretation of reflectometer signal for coherent modes confirmed by
comparison with BES data on DIII-D.

* Radial 1mm & tangential FIR interferometers

* survey of mode activity across entire plasma diameter
* detection of modes localized on high field side

* constrain reconstruction of spatial structure

* Plans to upgrade 1mm interferometer to multi-channel radially
viewing polarimeter

* allows measure of magnetic fluctuations



Reflectometers measure local density fluctuation in plasma

* Microwaves with low enough frequency Microwave (“O-mode”) propagation

(0 < w,,) reflect from "cutoff” layer 14
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Relative phase of reflected and launched waves determined

 Wave propagation controlled by density = phase fluctuations
proportional to density fluctuations (for large scale modes):

on/ny ~ 6¢/(2k,..L,)
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Toroidal mode numbers of coherent modes may be
determined from Mirnov array

Example of Mode Number
Determination

O 17 kHz mode phase
fit: n = 1.0108
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» modes visible in magnetic spectrum
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« EPMs, TAEs active during fast-ion loss events:

Three-wave interactions influence fast-ion loss

« EPM: Harmonic, f ~ 24 kHz, 48 kHz, n= 1,2
* TAEs: f~ 80 - 200 kHz, n=3 -7
* uniformly spaced in f and n: Af ~ 24 kHz, An = 1

* EPMs interact with pairs of TAEs:

* neighboring TAEs satisfy matching requirements:

f ¢ (kHz)

Afrae = fepm and Anp,e = Ngpy,

so for TAE pair (f,n) and (f',n):
f'=f+Afrue=F+fepmwand n' = n+ Anp,e = n+ ngy

* interacting modes show high bicoherence (bottom left)
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Three-wave interactions couple disparate scales
(TAEs and EPMs to CAEs)

» CAE spectrum broadens during fast-ion loss

events (drops in neutron rate) - sidebands
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Three-wave interactions with EPMs spatially
concentrates TAE energy
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» Interaction phase locks TAEs to form coherent structure:

* interaction with EPM TAEs imposes uniform frequency and wave number separation
* uniform spacing = well defined group velocity = EPM phase velocity
* TAEs form coherent (long-lived) structure that propagates in lock-step with EPM

» Coherent TAE structure is toroidally localized “"wave-packet” (top left)

* reflectometer phase band-pass filtered to extract TAE and EPM components
* TAE component shows wave-packet: seen as pulse every time it passes reflectometer
* pulse always occurs in same phase of EPM

* TAE energy "spatially concentrated” ONLY when EPM active (top right)
* TAEs frequently active without EPMs
* Wave-packet forms only when EPM strong



Three-wave interactions spatially concentrate CAE energy

« Interaction with EPMs forms CAEs into wave-packet (bottom left) -
analogous to EPM—TAE interaction

» Interaction with TAEs subdivides CAE wave-packets into smaller packets
(bottom right)

» Conjecture: high frequency wave-packets form because fast-ion
population (i.e. free energy source) localized toroidally by low-frequency
mode.
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TAE spatial structure investigated

e TAEs measurements available from:

» external toroidal Mirnov array (top right)

* three fixed-frequency reflectometers (bottom
right)

* radial chord 1mm interferometer (not shown)

 TAE measurements can be exploited in
several ways:

» compare with NOVA-K — test usefulness to
predict structure

* understand effect on fast ions — compare with
fast-ion measurements (NPA, SSNPA, sFLIP,

neutrons, etfc.)

* learn to exploit diagnostic capabilities of TAEs —
generally, AEs can burst or persist and chirp =
behavior sensitive to fast-ion and plasma
properties?




TAE structure evolves substantially over lifetime

» Typical TAE investigated
* frequency sweeps from f ~ 120 to 145 kHz during
t~263 — t~ 271 ms
* frequency stable after upsweep
*n = 5 (from external Mirnov array)

« AlAl/|A] ~ 300% in 20 ms at R ~ 122 cm
* possible causes of change:

* radial mode structure evolves significantly (e.g.
mode peak shifts radially)

» mode amplitude evolves

* Future work: use interferometer to distinguish
between causes

* Question: what causes rapid evolution?

* too rapid to be caused by equilibrium change?

» controlled by changes in fast-ion population?
must compare with fast-ion diagnostics

 why is slope of f same for multiple modes? (see
previous slide)

Plasma equilibrium temporal evolution
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NOVA-K solves linear ideal MHD stability equation
for eigenmodes

NOVAK pressure input - shot 120124 NOVAK q input - shot 120124
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 Solves in "perturbative” limit
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* Input from experiment:
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* pressure profile
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NOVA-K solutions include toroidicity-induced
Alfvén eigenmodes (TAE)

n =5 Confinuum and example mode locations

300 \/ v 9

e TAEs are shear Alfvén waves Alfvén continuum

* pure toroidal Fourier modes
 multiple poloidal harmonics
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recalculate without. Structure may change
substantially, but not frequency.
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e EPM measurements available from:

« external toroidal Mirnov array (top left)
* three fixed-frequency reflectometers

f (kHz)

f (kHz)

EPM spatial structure investigated

(bottom 3 left)

e radial chord 1mm interferometer (bottom
right) and tangential FIR interferometers
(top 3 right)

« complementary data available from USXR
chord arrays (not shown)
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EPM measurements indicate centrally peaked structure

Measurements of 10 kHz EPM
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* Future work: use interferometer measurements to constrain
reconstruction of EPM
* choose basis for reconstruction (e.g. splines)
» consider relative phase of signals
« consider simplifying assumptions (e.g. assume mode is antisymmetric flux function)



Conclusions

 Three wave interactions between fast-ion modes observed for first time
* interaction across multiple scales: EPM—TAE, EPM—CAE, TAE—CAE

e fast-ion loss events influenced

* universal effect: wave-packet formation - lower frequency mode spatially concentrates energy
of higher frequency mode

* TAEs and EPMs structure measured - observed with array of diagnostics:

» multiple reflectometers = radial structure
* radial & tangential interferometers (EPMs only for tang. interf.) = constrain reconstruction

* toroidal array of Mirnov coils outside plasma = determine toroidal mode number

 TAE mode structure calculated by NOVA-K (linear stability code)

* calculation uses conditions similar to experiment - some refinement necessary

* future work - compare calculated TAE structure to measurements
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