
Investigation of fast-ion mode nonlinear dynamics and spatial structure in NSTX*

by NA Crocker¹, WA Peebles¹, S. Kubota¹, ED Fredrickson², NN Gorelenkov², GJ Kramer², H Park², WW Heidbrink³, KC Lee⁴, CW Domier⁴ and NC Luhmann Jr⁴

¹University of California - Los Angeles ²Princeton Plasma Physics Laboratory ³University of California - Irvine ⁴University of California - Davis

Presented at the 48th Annual APS Division of Plasma Physics Meeting Philadelphia, PA Oct 30 - Nov 3, 2006

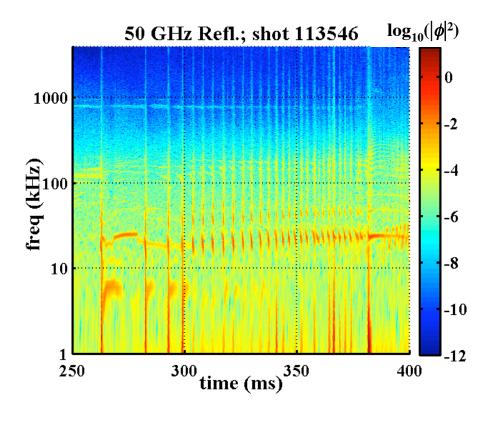
Investigation of fast-ion mode nonlinear dynamics and spatial structure in NSTX*

NA Crocker, WA Peebles, SK Kubota (UCLA); ED Fredrickson, NN Gorelenkov, GJ Kramer, H Park (PPPL); WW Heidbrink (UCI); KC Lee, CW Domier, NC Luhmann Jr (UCD)

Neutral beam heated plasmas in NSTX exhibit a rich spectrum of fast-ion driven coherent modes that includes fishbones as well as toroidicity-induced and compressional Alfvén eigenmodes (TAE and CAE). These modes are of significant interest because they can induce fast-ion transport and channel fast-ion energy into the plasma. In recent experiments, the spatial structure of fishbone density perturbations has been investigated through the simultaneous application of a 288 GHz radial interferometer and three fixed-frequency microwave reflectometers operated by UCLA, three tangential far-infrared interferometers operated by UCD and an array of magnetic sensing coils external to the plasma. The coils and the UCLA diagnostics have also been utilized in a similar investigation of TAEs. The results may be compared with predictions from NOVA-K. Nonlinear three-wave interactions between fishbones, TAEs and CAEs are also studied. These interactions transfer energy in space and time and can significantly influence the effect of the modes on fast ions.

^{*}Supported by U.S. DoE Grants DE-FG03-99ER54527 and DE-AC02-76CH03073

Why study global modes excited by fast ions?


- Fast ions important in fusion plasmas
 - produced by
 - · heating techniques: neutral beams, radio frequency power
 - fusion products: alpha particles
 - must be confined to heat plasma

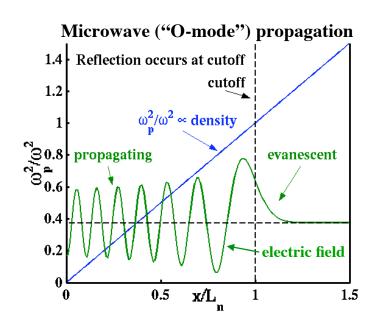
- Fast-ion modes affect fast-ion transport
 - modes may modify orbits
 - redistribute fast ions \Rightarrow change heat deposition, force balance, etc.
 - degrade fast-ion confinement

Summary of Results

- Three wave interactions between fast-ion modes observed for first time
 - interaction across multiple scales: EPM—TAE, EPM—CAE, TAE—CAE
 - fast-ion loss events influenced
 - universal effect: wave-packet formation lower frequency mode spatially concentrates energy of higher frequency mode
- TAEs and EPMs structure measured observed with array of diagnostics:
 - multiple reflectometers ⇒ radial structure
 - radial & tangential interferometers (EPMs only for tang. interf.) \Rightarrow constrain reconstruction
 - toroidal array of Mirnov coils outside plasma ⇒ determine toroidal mode number
- TAE mode structure calculated by NOVA-K (linear stability code)
 - calculation uses conditions similar to experiment some refinement necessary
 - future work compare calculated TAE structure to measurements

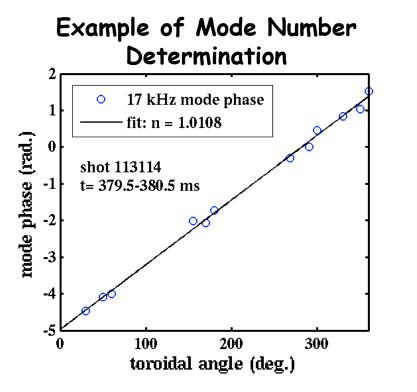
Neutral beam heated plasmas in NSTX exhibit rich spectrum of fast-ion modes

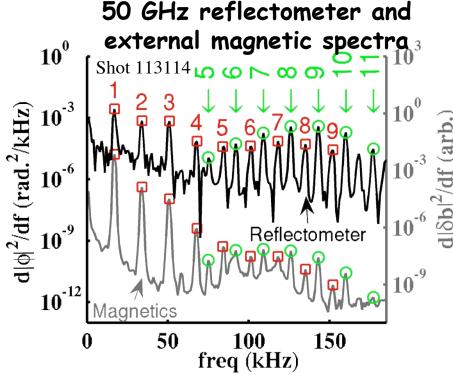
Compressional Alfvén Eigenmodes (CAE)


- \bullet 0.4 to > 2 MHz
- natural plasma resonance
- Toroidal Alfvén Eigenmodes (TAE)
 - 40 200 kHz
 - natural plasma resonance
- Energetic Particle Modes (EPM)
 - ≤ 100 kHz
 - mode defined by fast-ion parameters
 - strong frequency chirping common

Fast-ion mode structure probed by internal density fluctuation diagnostics

- Multiple reflectometers measure local density perturbation ⇒ radial structure of mode (low field side)
 - interpretation of reflectometer signal for coherent modes confirmed by comparison with BES data on DIII-D.
- Radial 1mm & tangential FIR interferometers
 - survey of mode activity across entire plasma diameter
 - detection of modes localized on high field side
 - constrain reconstruction of spatial structure
- Plans to upgrade 1mm interferometer to multi-channel radially viewing polarimeter
 - allows measure of magnetic fluctuations


Reflectometers measure local density fluctuation in plasma


- Microwaves with low enough frequency $(\omega < \omega_p)$ reflect from "cutoff" layer in plasma
 - ω_p^2 is proportional to density: $\omega_p^2 = e^2 n_0 / \varepsilon_0 m_e$
 - Dispersion relation for "ordinary mode" ("O-mode") microwaves: $\omega^2 = \omega_p^2 + c^2 k^2$
 - $k \rightarrow 0$ as $\omega \rightarrow \omega_p$
 - Microwaves reflect at "cutoff" surface, where $\omega = \omega_p$, k = 0

- Microwaves launched into plasma.
 Relative phase of reflected and launched waves determined
- Wave propagation controlled by density \Rightarrow phase fluctuations proportional to density fluctuations (for large scale modes): $\delta n/n_0 \sim \delta \phi/(2k_{vac}L_n)$

Toroidal mode numbers of coherent modes may be determined from Mirnov array

- Toroidal array of Mirnov coils outside plasma
 - modes visible in magnetic spectrum
 - mode phase varies with coil position ⇒ measure toroidal mode number
- · Many peaks in refl. spectrum also seen in magnetic spectrum
 - if peaks in both spectra, mode number of refl. perturbation known

Three-wave interactions influence fast-ion loss

Neutron Rate

Reflectometer

Magnetics

freq (kHz) 100 50

fred (kHz) 100 50 50

50

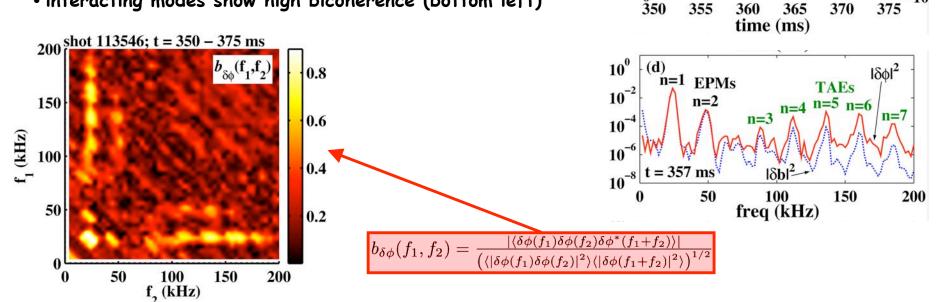
shot 113546

 $\log_{10}(|\delta\phi|^2)$

 $\log_{10}(|\delta b|^2)$

-5

• EPMs, TAEs active during fast-ion loss events:

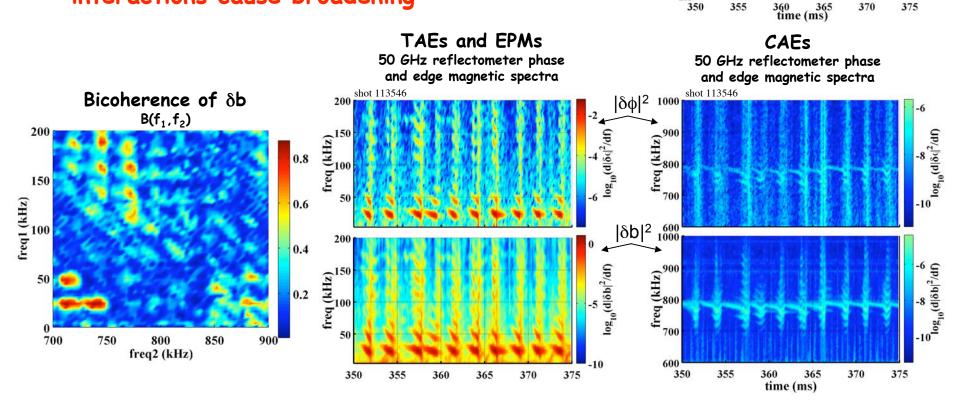

- EPM: Harmonic, $f \sim 24$ kHz, 48 kHz, n = 1.2
- TAEs: $f \sim 80 200 \text{ kHz}$, n = 3 7
 - uniformly spaced in f and n: $\Delta f \sim 24$ kHz, $\Delta n = 1$

EPMs interact with pairs of TAEs:

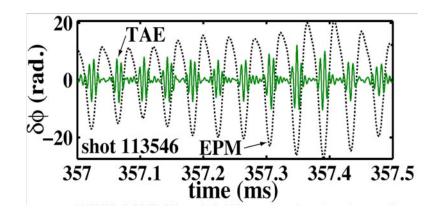
• neighboring TAEs satisfy matching requirements:

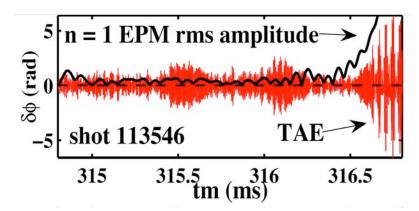
$$\Delta f_{\text{TAE}} = f_{\text{EPM}}$$
 and $\Delta n_{\text{TAE}} = n_{\text{EPM}}$,
so for TAE pair (f, n) and (f', n') :
 $f' = f + \Delta f_{\text{TAE}} = f + f_{\text{EPM}}$ and $n' = n + \Delta n_{\text{TAE}} = n + n_{\text{EPM}}$

• interacting modes show high bicoherence (bottom left)


Three-wave interactions couple disparate scales (TAEs and EPMs to CAEs)

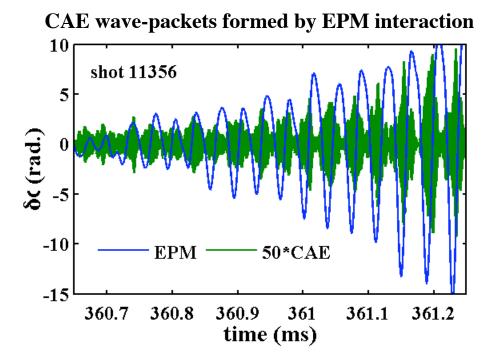
Neutron Rate

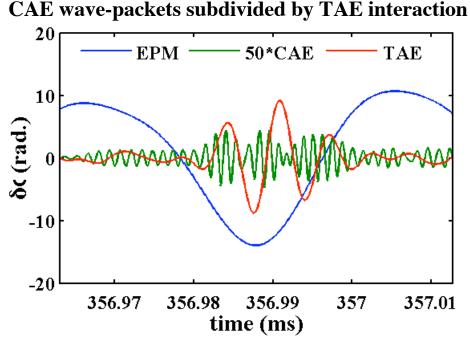

(with fluctuation bursts marked)


2.1

- CAE spectrum broadens during fast-ion loss events (drops in neutron rate) - sidebands appear
- bicoherence measurement indicates three-wave interactions cause broadening

Three-wave interactions with EPMs spatially concentrates TAE energy

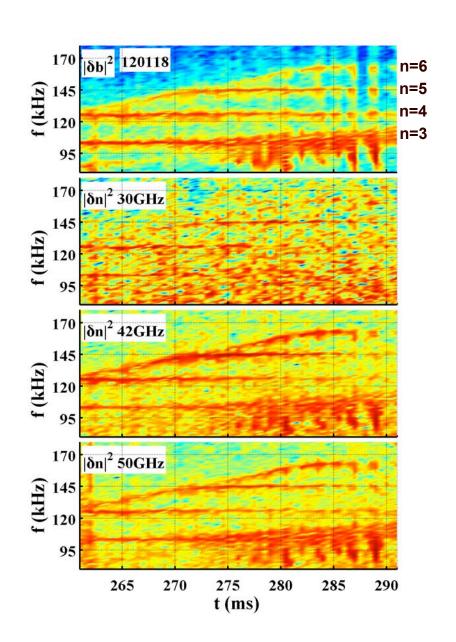




- Interaction phase locks TAEs to form coherent structure:
 - interaction with EPM TAEs imposes uniform frequency and wave number separation
 - uniform spacing ⇒ well defined group velocity = EPM phase velocity
 - TAEs form coherent (long-lived) structure that propagates in lock-step with EPM
- Coherent TAE structure is toroidally localized "wave-packet" (top left)
 - reflectometer phase band-pass filtered to extract TAE and EPM components
 - TAE component shows wave-packet: seen as pulse every time it passes reflectometer
 - pulse always occurs in same phase of EPM
- TAE energy "spatially concentrated" ONLY when EPM active (top right)
 - TAEs frequently active without EPMs
 - · Wave-packet forms only when EPM strong

Three-wave interactions spatially concentrate CAE energy

- Interaction with EPMs forms CAEs into wave-packet (bottom left) analogous to EPM—TAE interaction
- Interaction with TAEs subdivides CAE wave-packets into smaller packets (bottom right)
- Conjecture: high frequency wave-packets form because fast-ion population (i.e. free energy source) localized toroidally by low-frequency mode.


TAE spatial structure investigated

TAEs measurements available from:

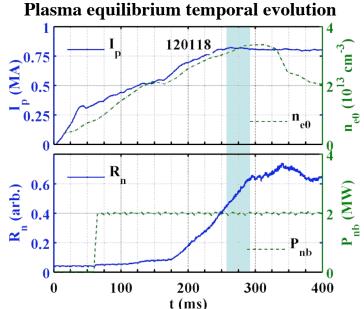
- external toroidal Mirnov array (top right)
- three fixed-frequency reflectometers (bottom right)
- radial chord 1mm interferometer (not shown)

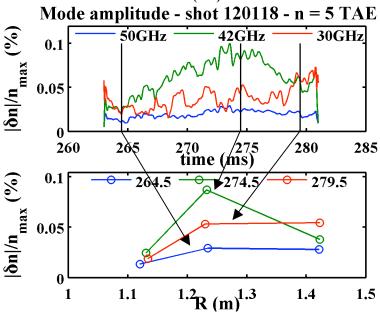
TAE measurements can be exploited in several ways:

- compare with NOVA-K test usefulness to predict structure
- understand effect on fast ions compare with fast-ion measurements (NPA, SSNPA, sFLIP, neutrons, etc.)
- learn to exploit diagnostic capabilities of TAEs —
 generally, AEs can burst or persist and chirp ⇒
 behavior sensitive to fast-ion and plasma
 properties?

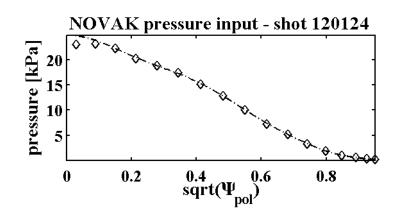
TAE structure evolves substantially over lifetime

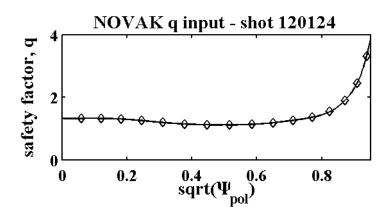
Typical TAE investigated

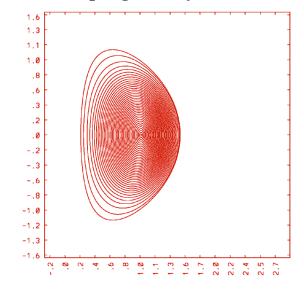

- frequency sweeps from $f \sim 120$ to 145 kHz during $t \sim 263 t \sim 271$ ms
- frequency stable after upsweep
- n = 5 (from external Mirnov array)

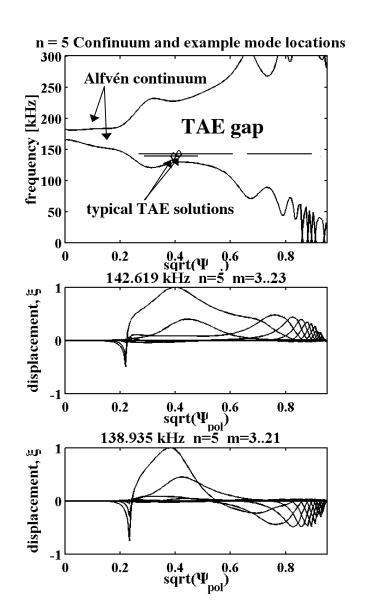

• $\Delta |\hat{n}|/|\hat{n}| \sim 300\%$ in 20 ms at $R \sim 122$ cm

- possible causes of change:
 - radial mode structure evolves significantly (e.g. mode peak shifts radially)
 - mode amplitude evolves
- Future work: use interferometer to distinguish between causes

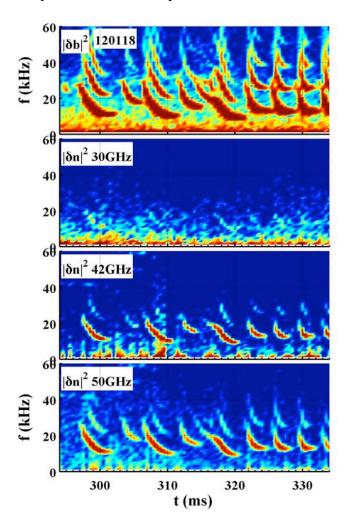

Question: what causes rapid evolution?


- too rapid to be caused by equilibrium change?
- controlled by changes in fast-ion population?
 must compare with fast-ion diagnostics
- why is slope of f same for multiple modes? (see previous slide)

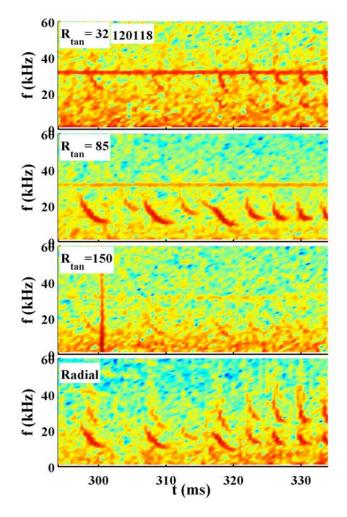

NOVA-K solves linear ideal MHD stability equation for eigenmodes


NOVAK input geometry - shot 120124

- Solves in "perturbative" limit
 - fast ions affect growth rate, not mode structure and frequency
- Input from experiment:
 - equilibrium geometry
 - pressure profile
 - q profiles
- Solution assumes no rotation
 - must account for rotation in experiment typically, mode considered Doppler-shifted by rotation at mode peak

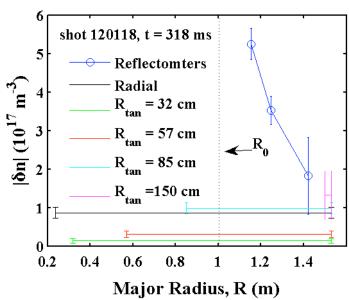

NOVA-K solutions include toroidicity-induced Alfvén eigenmodes (TAE)

- TAEs are shear Alfvén waves
 - pure toroidal Fourier modes
 - multiple poloidal harmonics
- TAE frequencies lie in "TAE gap" in Alfvén continuum - heavily damped if intersect continuum
- Typical solutions shown on right
 - Calculated with "acoustic filtering" for speed. Must recalculate without. Structure may change substantially, but not frequency.
- Future work: Compare measurements to solutions with similar frequencies
 - frequency match may be inexact due to errors in plasmas equilibrium used by NOVAK

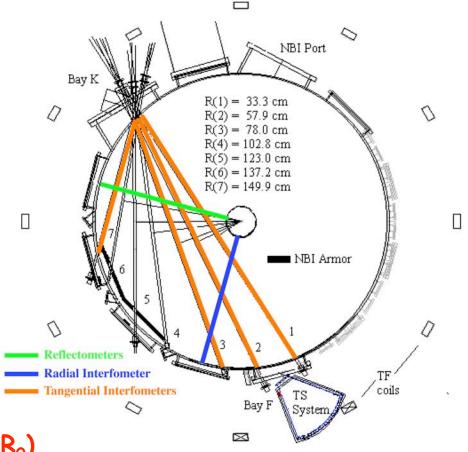


EPM spatial structure investigated

- EPM measurements available from:
 - external toroidal Mirnov array (top left)
 - three fixed-frequency reflectometers (bottom 3 left)



- radial chord 1mm interferometer (bottom right) and tangential FIR interferometers (top 3 right)
- complementary data available from USXR chord arrays (not shown)



EPM measurements indicate centrally peaked structure

• Reflectometer measurements of Tangential In 10 kHz EPM indicate centrally peaked structure (i.e. peak near R₀)

- Future work: use interferometer measurements to constrain reconstruction of EPM
 - choose basis for reconstruction (e.g. splines)
 - · consider relative phase of signals
 - consider simplifying assumptions (e.g. assume mode is antisymmetric flux function)

Conclusions

- Three wave interactions between fast-ion modes observed for first time
 - interaction across multiple scales: EPM—TAE, EPM—CAE, TAE—CAE
 - fast-ion loss events influenced
 - universal effect: wave-packet formation lower frequency mode spatially concentrates energy of higher frequency mode
- TAEs and EPMs structure measured observed with array of diagnostics:
 - multiple reflectometers ⇒ radial structure
 - radial & tangential interferometers (EPMs only for tang. interf.) \Rightarrow constrain reconstruction
 - toroidal array of Mirnov coils outside plasma ⇒ determine toroidal mode number
- TAE mode structure calculated by NOVA-K (linear stability code)
 - calculation uses conditions similar to experiment some refinement necessary
 - future work compare calculated TAE structure to measurements

Requests For Electronic Copies (please provide e-mail address)