

Research the Printing of the Surger of the S

#### Variation of T<sub>e</sub>, n<sub>e</sub>, and Particle Flux at the Divertor Surface with NBI Power for H-mode Plasmas in NSTX

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL **PPPL** PSI **Princeton U SNL** Think Tank. Inc. UC Davis **UC** Irvine UCLA UCSD U Colorado U Maryland **U** Rochester **U** Washington **U Wisconsin** 

C.E. Bush<sup>a</sup>, R. Maingi<sup>a</sup>, R. Kaita<sup>b</sup>, P. Roney<sup>b</sup>, H. W. Kugel<sup>b</sup>,
V. Soukhanovskii<sup>b</sup>, B. Leblanc<sup>b</sup>, R. Maqueda, A.L.
Roquemore<sup>b</sup>, J. Watkins<sup>d</sup>, K. Williams<sup>b</sup>, S. Zweben<sup>b</sup>,
and the NSTX Team

<sup>a</sup>Oak Ridge National Laboratory, Oak Ridge, TN USA <sup>b</sup>Princeton Plasma Physics Laboratory, Princeton, NJ USA <sup>c</sup>Lawrence Livermore National Laboratory, Livermore, CA USA <sup>d</sup>Sandia National Laboratory



48th APS-DPP Conference October 30-November 3, 2006 Philadelphia, Pennsylvania Culham Science Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokvo **JAERI** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

## Abstract

•The interaction of the diverted plasma from the edge of NSTX NBI heated H-mode plasmas with the divertor surfaces has been studied using an array of divertor Langmuir probes and other diagnostics. This study included NBI injection power scans and different divertor configurations, including lower single null (LSN) and double null (DN) divertors, over a range of plasma conditions. For a toroidal field of  $B_t = 0.45$  Tesla, the plasma current,  $I_p$ , range was 0.6 to 1.0 MA. The NBI power scan was  $P_{h} = 1-6MW$ . An array of Langmuir probes, flush mounted with the plasma facing surfaces of the divertor tiles, were used to obtain divertor  $T_{e}$ ,  $n_{e}$ and particle flux. The particle flux to the probes increased with  $P_{b}$ , however, the variation in  $T_{e}$  is more complex, possibly due to divertor strike point drift and variations in dynamics of the main chamber plasma. Results for LSN and DN configurations will be discussed and compared. Correlations between probe  $T_e$ ,  $n_e$ , and particle flux, and divertor heat flux,  $D_{\alpha}$  signals and other divertor diagnostics will also be discussed.

C. Bush, APS-DPP 48-2006

#### 



| Enabling Capabilities:                      |             |
|---------------------------------------------|-------------|
| <ul> <li>350° C bakeout of grap</li> </ul>  | ohite tiles |
| Regular boronization (                      | ~3 weeks)   |
| Helium Glow between                         | discharges  |
| <ul> <li>Center stack gas inject</li> </ul> | tion        |
| <ul> <li>Error field reduction</li> </ul>   |             |
| Parameters Achieved:                        |             |
| Major Radius                                | 0.85m       |
| Minor Radius                                | 0.67m       |
| Plasma Current                              | 1.5MA       |
| Toroidal Field                              | 0.6T        |
| Heating and Current Drive                   |             |
| NBI (100keV)                                | 7 MW        |
| RF (30MHz)                                  | 6 MW        |

# Outline

 Initial NSTX Langmuir Probe System is a coarse array

-Sample IV Characteristic data

- Langmuir Probe data obtained for vast majority of shots
  - -Especially the last 3 campaigns
  - -Data for many configurations
  - -Data for many conditions
- Report Emphasizes a Beam Power Scan
   —Also a series of Gas Puff experiments
- I<sub>sat</sub>, T<sub>e</sub> reported for a limited set of experiments
- Summary

#### **EFIT Equilibrium Plots Show Strike-Points**

Shot= 105587, time= 250ms



The EFIT equilibrium shows the location of the inner and outer strike-points on the divertor plates of NSTX. In general the strike-points and measured probe positions are in good agreement.

### **Divertor Langmuir Probes**



## **Fit to IV Characteristic for Flush Probe**



# Waveforms of I<sub>sat</sub>- Outer Divertor Probes



C. Bush, APS-DPP 48-2006

# Variation of I<sub>sat</sub> with NBI Power



# Variation of J<sub>sat</sub>, t<sub>e</sub> and n<sub>e</sub> vs time



#### Heat Flux Profile Becomes More Peaked with Increasing NBI Power

- Peak in I<sub>sat</sub> occurs near peak heat flux
- In general peak I<sub>sat</sub> is independent of P<sub>b</sub>, heating power
   5 \_\_\_\_\_\_ 5 \_\_\_\_\_ 50



C. Bush, APS-DPP 48-2006

om

#### Radial Variation of J<sub>sat</sub>, t<sub>e</sub> and n<sub>e</sub> on Divertor Plate for NBI Power = 3 MW



#### Radial Variation of J<sub>sat</sub>, t<sub>e</sub> and n<sub>e</sub> on Divertor Plate with NBI Power



C. Bush, APS-DPP 48-2006



# Outer Divertor Probe Te vs Time, Pb = 4 MW



#### Waveforms of I<sub>sat</sub>(ion) for Outer Divertor Probes



Page 16

#### I<sub>sat</sub> for Probes: Divertor GAS Injector Puff - 500 Torr







Page 19



#### I<sub>sat</sub> for Probes: Divertor GAS Injector Puff - 700 Torr



### **Summary**



- NSTX has a coarse probe array
  - —Radial variation of I<sub>sat</sub> and J<sub>sat</sub> Outer Divertor similar to that of the heat flux
  - $\rm -T_e$  along divertor surface in range 5 to 25 eV over the beam power scan
- Response to Gas Puff Experiments
  - -Probes in SOL show correlation with  $D_{\alpha}$  measured at divertor plate (possible ~ few ms lag)
  - -Signals large in SOL, smaller in private flux region
  - Other features



# END