

Characterization of intermittent turbulence in the edge of the NSTX experiment with the Gas Puff Imaging

<u>M. Agostini¹²</u>, S.J.Zweben³, R.J.Maqueda⁴, D.P.Stotler³, R.Cavazzana¹, P.Scarin¹, G.Serianni¹

¹Consorzio RFX, Associazione EURATOM-ENEA, Padova, Italy
² Dipartimento di Fisica, Università di Padova, Padova, Italy
³Princeton Plasma Physics Laboratory, Princeton, New Jersey, USA
⁴Nova Photonics Inc., Princeton, New Jersey, USA

Motivations & Outline

 Turbulence commonly recognised as the dominant mechanism for anomalous transport

✓ Turbulent signals in all magnetic configuration exhibit intermittent behaviour, associated to the presence of structures which have a deep influence on confinement properties

 \checkmark The optical diagnostic Gas Puff Imaging is used in NSTX[†] and RFX-mod^{*} experiments to study edge turbulence and structures for all plasma conditions

✓ Comparison between NSTX and RFX-mod edge turbulence and between NBI L-mode and RF+NBI plasma in NSTX is carried out

M.Ono et al., *Plasma Phys.Cotrolled Fusion* **45** A335 (2003)
R.Paccagnella et al., *Phys.Rev.Lett.* **97** 075001 (2006)

The GPI diagnostic: principles

✓ Gas Puff Imaging: non-intrusive optical diagnostic to study the edge turbulence in fusion experiment

✓ Observes the excited neutral gas (D, He, H) puffed

$$I \propto n_0 f(n_e, T_e) = n_0 n_e^{\alpha} T_e^{\beta}$$

 \checkmark Characterization of the turbulence in the plane perpendicular to the main magnetic field

Study of edge structures motion and evolution

GPI geometry (1)

GPI geometry (2)

48th APS October 30 – November 3 2006

Similar power spectra in NSTX and RFX-mod

Similar behavior between the two experiments

- Power-law decay as f⁻³
- Different frequency ranges

The wavelet analysis

Wavelet transform of the function f(t) at time s and time-scale τ

Statistical properties change with fluctuation time-scale

48th APS October 30 – November 3 2006

Similar intermittent behavior in NSTX and RFX-mod

- > Flatness changes with the fluctuations time-scale τ
- High flatness for small time-scale and Gaussian statistic for bigger ones (F = 3)
- Similar behavior between the two experiments
- Scale ranges reflects the different power spectra

Opposite poloidal velocity in RF+NBI respect to NBI L-mode

Spectra

✓ Similar power law decay for 40 < f < 200 kHz

✓ RF+NBI shots exhibits a peak at low frequencies 1 < f < 3 kHz

Spectral analysis: opposite propagation of fluctuations

> Broadband fluctuations : common feature for edge plasma turbulence

Opposite edge flow direction between L-mode and RF heated plasma

Different K Spectra in RF+NBI & NBI L-mode

- K spectra obtained integrating the SKW spectra in frequencies
- Two different power laws decay in the L-mode shot

Changing in the K spectrum of the edge fluctuations during RF

Conditional average: technique

Technique used to study the radial extension of the structures

Intermittent structures of time scale τ identified in the central chord with a method based on the wavelet transform (LIM)**

> With this prescribed condition the conditional average is computed for all the radial chords

Positive and negative peaks are identified

** G.Boffetta at al., Phys.Rev.Lett. 83 4662 (1999)

V.Antoni et al., Europhys.Lett. 54 51 (2001)

Positive peaks larger in RF+NBI

> Clear positive peaks extended in the radial direction

- Peak extended mainly inward
- Structures larger radially in RF + NBI shot

Not clear negative peaks

NBI L-mode

RF + NBI

Not clear negative peaks

> Associated with a positive one

Camera data

Conditional average of the camera data: "averaged" structure

Prescribed condition: detection of an intermittent event in the central chord of the GPI

Good correlation between GPI and fast camera

Different radial distribution of structures in the two cases

Packing fraction:

$$f(r) = \sum_{\tau} \tau \frac{\Delta N(r,\tau)}{\Delta t}$$

M.Spolaore et al., Phys.Rev.Lett. 93 215003 (2004)

Represents the fraction of time occupied by structures

Packing fraction increases with the radius for L-mode discharges, constant for RF plasma

> Fluctuation level increases with the radius

Radial profiles

Density and temperature profiles from Thomson scattering

Radial dependence of fluctuations and packing fraction not only due to the main profiles

Results

Statistical properties

- Similar power-law decay of power spectra for NSTX & RFX-mod
- > Intermittency identified in NSTX & RFX-mod edge turbulence

Turbulence edge flow

>NSTX NBI L-mode: along the ion diamagnetic drift (~ - 5 km/s)

>NSTX RF+NBI: opposite to the ion diamagnetic drift (~ +10 km/s) Development of strong inward E_r

Edge Structures

NSTX : Radially more extended for RF+NBI than NBI L-mode

Conclusions

> Intermittency detected the in the edge turbulence of NSTX: statistical properties of fluctuations depend on the scale of the fluctuation itself

Similar behavior detected in RFX-mod RFP experiment

Negative averaged structures not clear: diagnostic limitation or real physics?

> RF heating influence the plasma edge: changing in the turbulent flow and coherent structures

Future works

Characterize different types of discharges of NSTX

 Compare experimental results with theoretical model predictions

 Compare the evolution of 2D turbulent structures of NSTX and RFX-mod [see G.Serianni et al., UP1.00054 this conference]

Are you interested?

email	email

Velocity in RFX-mod

Velocity perpendicular to the main magnetic field is measured with GPI in RFX-mod

Rotating magnetic perturbation applied

✓ Along the ExB drift direction

Comparable to the velocity measured by Langmuir probes

 Change in velocity sign due to opposite radial electric fields