Supported by

Confinement Scaling and Transport Physics in NSTX

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL **PPPL** PSI **Princeton U SNL** Think Tank, Inc. UC Davis UC Irvine **UCLA** UCSD **U** Colorado **U Maryland U** Rochester **U** Washington **U Wisconsin**

S. Kaye, R. Bell, R. Budny, W. Horton, F. Levinton, J. Kim, J. Menard,
D. Mueller, B. LeBlanc, E. Mazzucato,
D. Mikkelsen, H. Park, G. Rewoldt,
D. Smith, W. Wang, H. Yuh

48th Annual Meeting of the APS-DPP Wednesday, November 1, 2006 Philadelphia, PA

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokvo **JAERI** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR. Czech Rep U Quebec

1

ISTX

Office of

Science

NSTX Addresses Transport & Turbulence Issues Critical to Both Basic Toroidal Confinement and Future Devices

- NSTX offers a novel view into plasma T&T properties
 - NSTX operates in a unique part of dimensionless parameter space: R/a, β_T , (ρ^* , ν^*)
 - Dominant electron heating with NBI: relevant to α -heating in ITER
 - Excellent laboratory in which to study electron transport: electron transport anomalous, ions close to neoclassical
 - Large range of β_T spanning e-s to e-m turbulence regimes
 - Strong rotational shear that can influence transport
 - Localized electron-scale turbulence measurable ($\rho_e \sim 0.1 \text{ mm}$)

Major Radius R ₀	0.85 m
Aspect Ratio A	1.3
Elongation ĸ	2.8
Triangularity δ	0.8
Plasma Current Ip	1.5 MA
Toroidal Field B _T	0.55 T
Pulse Length	1.5 s
NB Heating (100 keV)	7 MW
$\beta_{T,tot}$	up to 40%

This Poster Will Focus on Confinement & Transport Trends in NSTX and Their Underlying Processes

- Key confinement and transport dependences established (B_T, I_p, β, ν*, q(r),...)
 - Dedicated scans have isolated $I_{\rm p}$ and $B_{\rm T}$ dependences
- High priority ITPA tasks have been addressed
 - Dimensionless parameter scans in $\beta_{\text{T}}, {\nu_{\text{e}}}^{*}$
 - Established more accurate £ (=a/R) scaling with NSTX (& MAST) data included in the ITPA database
 Localized turbulence characteristics being assessed across wide range

of k (upper ITG/TEM to ETG)

 Theory/simulations have indicated ETG modes could be important in controlling electron transport

New Diagnostic Capabilities Have Facilitated Progress in Understanding Transport Processes

DNSTX

12 channel MSE [NOVA Photonics]

Important for equilibrium and microinstability calculations

Tangential micorwave scattering measures localized electron-scale turbulence

- k_r =2 (upper ITG/TEM) to ~24 (ETG) cm⁻¹
 - ρ_e ~0.01 cm
- ∆r ~ 6 cm
- ∆k ~ 1 cm⁻¹
- Can vary location of scattering volume (near R_{mag} to near edge)

High Resolution Kinetic Profiles Enable Precise Transport Analyses

NSTX

51-point CHERS

Dimensionless Parameter Scans Have Addressed High-Priority ITPA Issues

NSTX

β -scan at fixed q, B_T

- β -dependence important to ITER advanced scenarios (B $\tau_{98v2} \sim \beta^{-0.9}$)
- Factor of 2-2.5 variation in β_T
- Degradation of τ_{E} with β weak on NSTX

$\nu_{e}^{*}\text{-scan}$ at fixed q

- Factor of >3 variation in v_e^*
- Strong increase of confinement with decreasing collisionality

Examine β -dependence By Varying Assumed Fits To Other Parameters

Use results with good fits only ($R^2 > 0.50$) β -dependence can be positive

NSTX Data in ITPA Database Used to Establish More Accurate ε (=a/R) Scaling

$$\tau_{98y2} \sim I_p^{0.93} B_T^{0.15} n_e^{0.41} P^{-0.69} R^{1.97} \epsilon^{0.58} \dots$$

$$\tau_{new} \sim I_p^{0.73} B_T^{0.36} n_e^{0.39} P^{-0.62} R^{2.14} \epsilon^{1.03}$$

(Kaye et al., PPCF **48** [2006] A429)

Dedicated Scan Performed to Isolate B_T Scaling

Toroidal Field Scan at In=0.7 MA 0.6 0.4 0.2 Toroidal Magnetic Field (T) 0 4 2 Injected Neutral Beam Power (MW) 2 0 D_{α} (AU) 1 0 8 4 Line-Integral Density (1019 m⁻²) 0 0.1 0.2 0.3 0.4 0.5 0 0.6 Time (s) Scans carried out at constant Electron Density (10¹⁹ m⁻³) Thickness of "profiles" density, injected 6 represent envelope of power (4 MW) 5 B_T=0.35 T individual profiles at 4 B_T=0.45 T 3each condition Вт=0.55 Т 2-- multiple discharges 1-0.50 s at each condition 0+

0.5

1.0

0.0

VSTX

Dedicated Scan Performed to Isolate I_p Scaling

Time (s)

Dedicated H-mode Confinement Scaling Experiments Have Revealed Some Surprises

NSTX

Strong dependence of $\tau_{\rm F}$ on B_{τ}

11

Variation of Electron Transport Primarily Responsible for B_T Scaling

Broadening of T $_{e}$ & reduction in χ_{e} outside r/a=0.5 with increasing B $_{T}$

Theory/Gyrokinetic Calculations Suggest ETG May Play an Important Role in Determining Electron Transport at Low B_{τ}

GS2 calculations show ETG linearly unstable only at lowest B_T

T_e Profiles Near Critical Gradient for ETG

- 0.35 T: R/LTe 20% above critical gradient
- 0.45, 0.55 T: R/LTe 20-30% below critical gradient

Non-Linear Simulations Indicate Formation of Radial Streamers (up to $200\rho_{\rm e}$)

FLR-modified fluid code [Horton et al., PoP 2005]

Inferred Transport Levels, χ_e Agree with Those From E-M ETG Theory at Low B_T

Good agreement between experimental and theoretical saturated transport level at 0.35 T

Experimental χ_e profile consistent with that predicted by e-m ETG theory [Horton et al., NF 2004] at 0.35 T • Not at higher B_T

Ion Transport Primarily Governs I_p Scaling - Ions Near Neoclassical Level -

Turbulence Measurements + Gyrokinetic Calculations Have Helped Identify Possible Sources of Transport

Theory/Gyrokinetic Calculations Indicate Both ITG/TEM and ETG are Possible Candidates for Electron Transport

GS2 calculations indicate lower linear growth rates at all wavenumbers during H- than during L-phase: *ETG unstable*

Experimental χ_e Profile Consistent With That Predicted by E-S ETG Theory

(Horton et al, Phys. Plasmas [2004])

ISTX

A Significant Number of NSTX Discharges Have χ_e Values Consistent With ETG Expectations

NSTX Plays a Key Role in Multi-Scale Transport & Turbulence Research

• Confinement and transport trends found to differ from those at higher R/a

- Strong B_T , weaker I_p scaling
 - Electron transport variation primarily responsible for B_T scaling
 - Ions near neoclassical; primarily responsible for I_p scaling
 - Understand the source of the difference in confinement trends at different R/a (low vs high-k turbulence dominant at different R/a, B_T?)
- Data provided to ITPA H-mode database for R/a and β_T scalings
 - No degradation of $B\tau_E$ with β_T
- n
 n
 n decreases from L- to H-phase for k_r=2 to 24 cm⁻¹ (upper ITG/TEM to ETG range)
 - Associated with reduction in transport
- Linear and non-linear theory have indicated ETG modes could be important
 - Need also to consider lower-k modes (microtearing, ITG/TEM)