HHFW Propagation and Damping Properties on NSTX vs B_T and Antenna k_{II}

College W&M **Colorado Sch Mines Columbia Univ** Comp-X **General Atomics** INEL Johns Hopkins Univ LANL LLNL Lodestar MIT **Nova Photonics** New York Univ **Old Dominion Univ** ORNL PSI Princeton Univ **SNL** Think Tank, Inc UC Davis UC Irvine UCLA UCSD Univ Colorado Univ Maryland Univ Rochester Univ Washington **Univ Wisconsin**

J. Hosea, R. Bell, S. Bernabei, L. Delgado-Aparicio, B. LeBlanc, C.K. Phillips, P. Ryan, S. Sabbagh, K. Tritz, J. Wilgen, J.R. Wilson Princeton Plasma Physics Laboratory *on behalf of the* NSTX Research Team

Culham Sci Ctr Univ St. Andrews York Univ **Chubu Univ** Fukui Univ Hiroshima Univ Hyogo Univ Kyoto Univ Kyushu Univ Kyushu Tokai Univ NIFS Niigata Univ **Univ Tokvo JAERI** Hebrew Univ loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA. Frascati CEA. Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep

HHFW Propagation and Damping Properties on NSTX vs B_T and Antenna k_{\parallel}

VSTX

- Goal: Study RF power loss properties at several k_{II} values as a function of magnetic field in order to separate parametric decay instability (PDI) and surface wave losses:
 - PDI ion heating should be somewhat weaker at higher field
 - Edge RF fields should decrease with B since Vgroup \propto B
 - Surface fast wave propagation characteristics should be a strong function of $k_{\rm II}$ and $B_{\rm T}$
 - Wave propagation onset density is $\propto B^* k_{\rm H}{}^2$ in front of the antenna
- RF power deposited in the plasma core is evaluated by modulating the RF power and fitting the rise and fall of the stored energy with exponential functions

$$W(t) = W_0 - (W_0 - W_F)^* (1 - e^{-t/\tau})$$

 $- P_{RFDep} = \Delta W_F / \tau$

• RF power loss is then $\Delta P_{RFpulse} - P_{RFDep}$

Electron Stored Energy and τ Values Evaluated for k_{II} = -7 m⁻¹, at B_T = 4.5 kG, I_P = 600 kA

- W_e is obtained by integrating Thomson scattering $P_e(r)$ over the EFIT magnetic field surface volumes
- Electron and total stored energy exhibit exponential rises and τ_{We} is comparable to the corresponding value τ_{WEF}

P_{RF} Losses at Edge of Plasma Are Larger for Lower k_{\parallel}

• RF power deposited in plasma core is estimated by $P_{RFDep} = \Delta W_F / \tau$

	Heating Efficiency	Heating Efficiency $[P_{RFDep}/\Delta P_{RF}]$ (%)]:	
	Electrons	Total	
- 14 m ⁻¹ :			
Second RF Pu	lse 84	101	
(Sawtooth ins	stability		
much weake	r for this pulse)		
Third RF Puls	e 48	68	
- 7 m ⁻¹ :			
Second RF Pu	lse 24	39	
Third RF Puls	e 22	44	

• RF power reaching the core is considerably reduced for the smaller k_{\parallel} case

Parametric Decay Instability (PDI) Losses are Evident at Both k_{||} Values

- Strong edge ion heating via parametric decay waves is observed with edge charge exchange spectroscopy
- Significant RF power is required to sustain the large temperature difference between the edge ions and electrons
 - 16%/23% loss for 14 m⁻¹/-7 m⁻¹ for P_{RF} = 2 MW

- Power loss increases somewhat with wavelength
 - but other loss mechanism(s) are required to explain much lower heating efficiency at lower k_{\parallel}

- Propagation is very close to wall at 7m⁻¹ and on the wall at 3m⁻¹
- Losses in surface should be higher for lower k_{II}
- Increasing B should push onset farther from antenna and increase heating

Core Electron Heating Depends Strongly on k_{\parallel} and B

Electron heating for $B_T = 5.5 \text{ kG}$, $I_P = 720 \text{ kA}$

- Strong dependence on k_{II} is clear almost no heating at 3m⁻¹
- Heating at $-7m^{-1}$ is greatly improved over the earlier B_T = 4.5 kG case for the second and third RF pulses
 - comparable to 14m⁻¹
- Heating at -7m⁻¹ for first RF pulse is about half that for 14m⁻¹

- ΔW_e for B_T = 5.5 kG is ~ 2 times the value for 4.5 kG over the same time interval.
- The RF power deposition into the electrons increases from ~ 22% to ~ 40% at the higher field and the total efficiency increases from ~ 44% to ~ 65%.

- Edge density appears to affect the heating when it is above the onset density close to the antenna
- This suggests that surface wave propagation near the wall/antenna is contributing to RF power losses

PDI heating is not a strong function of B_T at lower k_{\parallel} and does not account for improved heating at $B_T = 5.5$ kG

- Small reduction in PDI loss at higher field for 7 m⁻¹ but zero PDI loss would be required to match the increase in efficiency
- Very poor heating efficiency at -3m⁻¹ and at lower field is not caused by PDI heating alone

Surface waves are detected with an RF probe on the opposite side of the machine from the HHFW antenna

- RF probe is inside a large port ~ 5 cm outside the vessel wall radius
- It detects the poloidal RF field which is indicative of toroidal currents in the vessel structure

- $B_{\theta RF}$ at Bay J midplane increases by a factor of ~ 3 for a decrease in k_{\parallel} from 14 m^{-1} to -3 m^{-1}
- This could give rise to around an order of magnitude increase in structure and sheath losses

Conclusions

- HHFW heating increases with increasing ${\bf k}_{||}$ and improves markedly with B
- PDI edge heating is a relatively weak function of B and does not account for the strong B dependence of RF losses
- Strong improvement in heating efficiency with B at k_{||} = |7|m⁻¹ indicates that surface waves are contributing to the RF losses

 loss level appears to depend critically on the propagation onset location relative to the antenna/wall surface
- Measured edge RF B field is strongly dependent on k_{||} further suggesting that surface waves contribute significantly to RF power losses