MARFE Structure and Dynamics in NSTX

R. J. Maqueda

Nova Photonics Inc., New Jersey, USA

R. Maingi, C. E. Bush

Oak Ridge National Laboratory, Tennessee, USA

K. Tritz

Johns Hopkins University, Maryland, USA

K. C. Lee

University of California at Davis, California, USA

and the NSTX Research Team

48th APS-DPP Meeting

Oct. 30-Nov. 3, 2006 Philadelphia, PA

Movie clips are hyperlinked to "camera" symbol.

Complex MARFE and ELM interactions observed with fast camera in NSTX

- MARFES observed around center stack in Double-null discharges
- Whereas large ELMs can quench a MARFE, small ELMs result in temporary or partial quenching, followed by reformation
- The MARFE is only roughly axisymmetric, with apparent rotation in emission profiles

Outline

- Basic MARFE physics review
- MARFE/ELM dynamics with fast, visible camera
- Temporal correlation of small ELM and MARFE cycles
- MARFE structure
- Summary

See Fred Kelly's poster **QP1.35**.

MARFE basics

Multifaceted Asymmetric Radiation From the Edge

B. Lipschultz et al., Nucl. Fus. 1984

Conduction

Radiation

$$3\frac{\partial(nT)}{\partial t} = \frac{\partial}{\partial s} \left(K_{//} \frac{\partial T}{\partial s} \right) - \sum n_e n_z L_z(T) \pm \dots$$

Thermal instability possible if $dL_z/dT < 0$, "radiation barrier".

Different models include additional terms, see Fred Kelly's poster QP1.35.

MARFE: Toroidal band of low temperature, high density, high radiation plasma surrounding the center column of the device.

MARFE dynamics (D_{α})

- Toroidally symmetric MARFE moves downwards (ion ∇B-drift direction).
- ELM activity in divertor region coincides with burn through of most of MARFE.
- Toroidally localized MARFE remnants move upwards, following field line.
- Upward movement stagnates and MARFE precursor expands into a toroidally symmetric band.
- Type I ELM (at ~666 ms) burns through MARFE.

Clip: D_{α} filter

9 μ s exposures

10 ms at 68000 frames/s playback at 220 μs/s

800 kA 6.0 MW NBI Double null

MARFE dynamics (Carbon emission)

800 kA 6.0 MW NBI Double null

Clip: 26 μs exposures 10 ms at 30000 frames/s playback at 250 μs/s

- **Dynamics similar** in CII and CIII compared to D_{α} .
- Enhancement factors of 6-10 typical for <u>all</u> <u>three</u> CII, CIII and D_α.

ELM cycle governs MARFE dynamics

- ELM cycle and MARFE cycle closely linked.
- Nevertheless, behavior and dimensions varies.
- Precursor of Type I ELM first reverses MARFE movement and then burns through MARFE.
- ELM character and size reflected on MARFE dynamics.

Wide-slit "streak" compositions, D_{α} light.

MARFE precursor rotation frequency slower than HFS filament rotation.

- Below MARFE, filament rotates at ~12 kHz (n=1), counter to I_p.
- MARFE precursor rotates at ~7 kHz, counter to I_p.
- No filament observed above MARFE.

MARFE Precursor trajectory

Upward movement of MARFE precursor

Multi-exposure composites, D_{α} light.

660.502 ms - 660.821 ms

661.937 ms - 662.285 ms

Field line at separatrix, $\psi_N=1$ LRDFIT, J. Menard, PPPL

MARFE pre-cursor almost field aligned near separatrix

- Field line pitch decreases as vertical stagnation approached
- In lab frame v_{pl}=(14.0±2.0) km/s

- ($C_s \sim 4 \text{ eV for } D^+$) Parallel transport picture of MARFE movement
- Edges of precursor close to thermal stability.
- Extra heat upstream pulls lower edge out of unstable conditions.
- Particles now in warmer edge need to expand, both upstream and downstream.
- Particles moving downstream deepen instability condition on rest of plasmoid.

Downstream edge grows and precursor "moves".

MARFE structure

- MARFE structure extends within the separatrix.
- Typical poloidal extents of 5-15 cm.

- Bifurcated structure observed in φ, Z plane for the MARFE precursor.
- Moving precursor acts as seed for partial, short-lived toroidal MARFE.

Summary

- Coincident with the ELM cycle the MARFE moves up/down the center stack.
- The toroidally symmetric MARFE is, in some cases, born from a precursor resulting from partial burnthrough of the preceding MARFE in the cycle.
- HFS ELM filament rotates faster than MARFE precursor, and opposite to core plasma rotation.
- Pitch of precursor movement can be longer than pitch of B field.
- MARFE precursor presents a bifurcated structure in ϕ , Z plane, and MARFE extends within separatrix ($\psi_N < 1$).

Lots of questions, lots to model!

See Fred Kelly's poster QP1.35.

Backup

Wide-slit "streak" compositions

