

Observation of the Enhanced Scattered High-k

Spectra during H-mode Phase on NSTX

H.K. Park¹, D.R. Smith¹, E. Mazzucato¹,
M. Bell¹, R. Bell¹, C.W. Domier², S. Kaye¹,
B. Leblanc¹, K.C. Lee², N.C. Luhmann, Jr.²,
R. Maingi³, V. Soukhanovskii⁴, K. Tritz⁵

48th DPP, APS Meeting

Oct 30 – Nov 3, 2006 Philadelphia, PA

PPPL, Princeton University, NJ
 UCD, CA
 Oak Ridge, TN
 LLNL, CA
 The Johns Hopkins University, MD

NSTX plays a key role in extending fluctuation measurement beyond the present data base

Turbulence type and transport physics

- Image: Multi-channel system → k-space turbulence continuum
- Capable to investigate turbulence physics up to k_⊥ρ_e~0.7 on NSTX
 - Present experiment is ~ up to k_⊥ρ_e~0.04
 - Ion loss is close to neo-classical
 - Electron loss is anomalous
 - Full exploitation of the turbulence based transport physics is the goal

Characteristics of the scattering system on NSTX

- Tangential multi-channel (5) scattering system:
 - □ P_o ~100 mW
 - □ λ_o ~1 mm (280 GHz)
- System resolution
 - Wave-number resolution ~∆k=a/2 ~1.0
 - Spatial resolution

Initial test results from Ohmic discharge (He)

Initial test results from NBI heated plasmas

- Monotonically decreasing power spectra during L-mode phase
- Non-monotonic power spectra during Hmode phase

Verification of the system performance

- Relative calibration is not completed
 - Scattering volume, relative efficiency between channels and k-matching conditions
- Source of errors
 - Emissions from plasma at this wavelength is negligible
 - Cross talk between channels is minimized by optically attenuating the signals of the low k channels.

Cross-Correlation

Test of cross coupling

Reduction of fluctuation is well correlated with improved confinement

- Scattering system measures reduced of fluctuations (^ñ_e) both upper ITG/TEM and ETC ranges during H-mode
- Ion and electron transport change going from L- to Hmodes
- Bursts of scattered signal at the highest k is noted.

Theoretical calculations Indicate both ITG, TEM and ETG are possible candidates for electron transport

- GS2 calculations indicate lower growth rates at all wavenumbers during H-mode phase
- ETG unstable

 $\gamma_{\text{lin}} >> \gamma_{\text{ExB}}$ during L-phase for all $k_{\theta}\rho_{s}$ $\gamma_{\text{lin}} << \gamma_{\text{ExB}}$ during H-phase for ITG/TEM $\gamma_{\text{lin}} \sim \gamma_{\text{ExB}}$ during H-phase for ETG

Spectral characteristic of bursts at the highest k

- Bursts were measured mainly at the highest wavenumber during H-mode phase
 - The burst consists of a highly coherent ES mode (400 kHz ~ 600 kHz) with a life time of 20 μs ~ 50 μs
 - The direction of this ES wave packet is toward the core of the plasma (edge probe did not measure)

Bolometry signal #4 is crossing the Scattering volume

Burst is highly correlated with ELM D_{α} lights (Slusher et al., PRL 53, 667, 1984)

Summary

- Multi-channel scattering system on NSTX to investigate TEM/ETG modes has been successfully commissioned in FY 06
- Reduction of fluctuations at the edge of H-mode plasma is consistent with the improved edge confinement
 - Monotonically decreasing (k-a) fluctuation level in L and OH plasma is consistent with other devices
 - □ Enhanced fluctuation is noted at higher k ($k_{\perp}\rho_{e} \sim 0.4$) is observed.
 - Reduction of fluctuation level in intermediate k (k_⊥ρ_e ~ 0.1 0.2) is pronounced (TEM mode suppression?)
- ES wave packets at Highest k during H-mode phase
 - The burst consists of a highly coherent ES mode (400 ~ 600 kHz) with a life time of 20 μs ~ 50 μs
 - The direction of this ES wave packet is toward the core of the plasma (edge probe could not measure)
 - Bursts of coherent mode which are highly correlated with the type V ELM close to the scattering volume