

The Enhanced Pedestal H-mode in NSTX

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL **PPPL** PSI **Princeton U** SNL Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

Rajesh Maingi Oak Ridge National Laboratory

M.G. Bell 2), R.E. Bell 2), E.D. Fredrickson 2), D.A. Gates 2), S.M. Kaye 2), B.P. LeBlanc 2), F. Levinton 3), J.E. Menard 2), S.A. Sabbagh 4), H. Yuh 3), and the NSTX Team

1) Oak Ridge National Laboratory

2) Princeton Plasma Physics Laboratory

3) Nova Photonics

4) Columbia University

48th APS Division of Plasma Physics Annual Meeting Philadelphia, PA

Nov. 1, 2006

Management Contractor for DOE's Oak Ridge National Laboratory

Culham Sci Ctr

U St. Andrews

Motivation

- Typical $T_{e,i}^{ped} \sim 100-300 \text{ eV}$ and $P_e^{ped} \sim 1-3 \text{ kPA}$
- NSTX data agree roughly with Guzdar PoP 2005 scaling for T_{ped}:

 $T_e^{ped} + T_i^{ped} \sim B_t^2 / (q^2 R (n_e^{ped})^{3/2}) \sim R/a$

- NSTX data agree with Cordey's NF '05 two term model for W_{ped} scaling
- New Enhanced Pedestal H-mode (EPH) observed with $T_{e,i}^{ped} \leq 650$ eV, $P_e^{ped} \leq 8$ kPa, with a pedestal in to $\psi_N \sim 0.8$, with pedestal $v_e^* \sim 0.1$
- Similarities with VH-mode in DIII-D

Enhanced Pedestal H-mode Characteristics

- A second transition to enhanced confinement and high pedestal T_e , $T_i \le 650 \text{ eV}$
- $H_{H89P} \sim 2.6-2.7$ due to high dW/dt
- Triggered after global MHD mode
- Apparent power threshold: between 2 and 4 MW
- Common feature: edge v_b develops large gradient
- Some of these discharges had low/no current density over inner 15cm, in which case $\beta_{N,max} \sim 4-4.5$

Edge and core T_e, T_i, and P_e increase rapidly after EPH-mode transition

Pedestal T_i from tanh fits increased with time

Changes in v_b accompany high T_{e.i}^{ped} in Enhanced **Pedestal H-mode**

15

10

5

-5

-10

[kV/m]

H-mode

-dP/dr V_o B_o

- First order radial force balance: $E_r + v_\theta B_\phi = v_\phi B_\theta + \nabla P_c / 6e N_c$
- EPH mode has $v_{\phi} \sim 0$ near • separatrix, probably due to drag from an island, such that ∇P term dominates v_{ϕ} over large region
- Large ∇v_{ϕ} indicative of large E_r' •

Enhanced Pedestal H-mode barrier width size comparable to gyro-diameter

- Edge scale lengths for both T_i and n_C approach the gyro-diameter during EPHmode
- Ion gyroradius $\rho_i \sim 0.7$ cm relative to IBI, owing to combination of local $T_i \sim 350$ eV and and IBI ~ 0.35 T at outer midplane
 - Approaching or at the fundamental limit on the gradient scale length?
- Note that ion poloidal gyroradius 100% higher, i.e. ρ_{i} ~ 1.4 cm
- Basic transport physics can be studied in EPH-mode, owing to large gyro-diameter and good spatial resolution of plasma profiles

MSE Shows Evidence for Formation of "Current Hole" in Certain EPH-mode Discharges

- At 0.12 s current profile is hollow but central current density is finite
- Small region of almost zero current density forms at 0.13 s
- Expands to about 15 cm diameter by 0.20s
- Central current density becomes positive again by 0.24 s

MSE Pitch Angle Profiles, $E_r(v_{\phi})$ Corrected 50 t=000130 s t=0.120 s 40 40 Pitch Angle [deg] Angle [deg] 30 30 20 20 Pitch 10 10 0 -10-101.2 1.3 1.0 0.9 1.0 1.1 1.4 1.5 0.9 1.1 1.2 1.3 1.4 1.5 Major Radius [m] Major Radius [m] 50 50 t = 0.200 s =0.240 s 40 40 Pitch Angle [deg] Angle [deg] 30 30 20 20 Pitch 10 10 0 #117820 -10-100.9 1.0 1.5 0.9 1.0 1.4 1.2 1.4 1.2 1.3 1.5 1.1 1.3 1.1 Major Radius [m] Major Radius [m]

F. Levinton, H. Yuh

Summary

- A second transition to enhanced confinement and high pedestal T_e , $T_i \le 650 \text{ eV}$ observed in certain discharges
- Triggered after global MHD mode
- Common feature: edge v_{ϕ} develops large gradient and region of large E_r ' penetrates further into the core than normal H-mode, similar to VH mode (*Burrell PoP 1994*)
- T_i gradients approaching fundamental limits?
- Termination thought to be related to ideal MHD instability due to extreme central reversed shear

Transition to Enhanced Confinement follows MHD