

NO1.7 - Error field identification and correction at high β_N in NSTX

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INFI Johns Hopkins U LANL IINI Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** SNL Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U** Marvland **U** Rochester **U** Washington **U** Wisconsin

J.E. Menard, D.A. Gates, C. Ludescher, D. Mastrovito, C. Neumeyer, S.A. Sabbagh, A. Sontag and the NSTX Research Team

48th Annual Meeting of the APS-DPP Wednesday, November 1, 2006 Philadelphia, PA

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hvoao U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokvo **JAERI** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache IPP, Jülich **IPP, Garching** ASCR, Czech Rep **U** Quebec

Stable operation above the ideal no-wall limit is routinely achieved without any error field correction or feedback control

Why bother with error field identification and control for NSTX?

DNSTX

- Some scenarios with lower κ , δ exhibit Ω_{ϕ} and β_{N} collapse when $\beta_{N} > \beta_{N}$ (no-wall)
- Measure 2-3 Gauss $B_{\perp}^{2/1}$ EF in LM experiments... what is EF source?
- <u>Present picture of EF Source</u>: EF from/near OH leads at top of machine induces **TF coil motion relative to** B_R sensors (plates, vessel) and thus **the PF coils**

Methodology for real-time TF error field correction (TF-EFC)

Rotation sustainment is a sensitive function of TF-EFC gain VSTX Solid: **Optimized TF-EFC gains Dashed:** Proportional gain **Dashed:** Proportional gain decreased 20% below optimum increased 20% above optimum Shot 119649, 119647 carbon f_{rotation} Shot 119649, 119645 carbon f_{rotation} 40 40 30 30 R=110cm R=110cm kНz ŔНz 20 20 R=120cm R=120cm 10[[]-R=130cm R=130cm 10 R=140cm R=140cm 0 0.2 0.0 0.4 0.6 0.8 0.0 0.2 0.4 0.8 0.6 Time (s) Time (s)

Combination of TF error field correction and n=1 feedback driven by B_P sensors optimizes plasma performance

- Mode detection
 - Linear compensation: PF, TF, OH
 - Assume n=1 thru 2 modes present
- RWM/EF coil current driven by:
 - Pre-programmed (braking, spectr.)
 - Correction of OHxTF EF
 - Feedback on n=1 component of B_P
- Feedback control optimization:
 - Scan phase of n=1 B_P wrt coil B_R
 - Scan proportional gain (0.7 optimal)

• No error field control during high β_{N} phase • TF-EFC

Plasma performance from time-averaged SPA currents from feedback equivalent to non-time-averaged currents

0 NSTX

•TF-EFC •TF-EFC + active n=1 B_P feedback •TF-EFC + time-averaged active n=1 B_P feedback Plasma current 800 600 120652 kĀ 400 120663 121529 200RWM coil 2 current per turn 400 200 umpe re s -200-400 RWM coil 1 current per turn 400 200umperes -200 -4000.2 0.40.8 1.0 12 0 0.6 seconds

- β_N, rotation (not shown) similar with and w/o timeaveraging of coil currents
 - Green shot EFC currents
 pre-programmed ⇒
 - n=1 RWM is stable
 - Stabilized by sustained Ω_{ϕ}
- Feedback on n=1 B_P changes EFC amplitude and phase relative to
 TF-EFC alone
 - TF EF model known to lose accuracy late in shot
 - Modification of RFA (and hence EFC) from β variation also possible

Summary

- OH lead-area EF tilts TF bundle several mm \rightarrow n=1 EF in vessel
- TF-EFC yields 50% increase in duration above no-wall limit
- Implemented real-time low-f mode-ID and n=1 B_P feedback
- Optimized phase and gain, compared and added to TF-EFC
 –n=1 feedback alone not (yet) robust
 - -n=1 feedback + TF-EFC doubles flat-top duration above no-wall limit
 - -Time-averaged control currents give same response \rightarrow RFA suppression

• Future work:

- -Attempt to reduce OH error field and/or better constrain TF motion
- -Incorporate non-linear TF motion to improve TF-EFC late in discharge
- -Incorporate up + down and B_R + B_P sensors for improved mode-ID
- Study full plasma response to EF with DCON/IPEC (J. Park QP1.29)

Backup Slides

Radial field measurements at ends of solenoid imply TF tilts and is approximately fixed at bottom of machine

- Vacuum shot: OH waveform from 800kA discharge (constant TF)
- Upper field significantly different than expected \Rightarrow 50-70G local EF
- Field at bottom close to expected value → small relative motion

VSTX