College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL **PPPL** PSI **Princeton U SNL** Think Tank, Inc. **UC Davis** UC Irvine **UCLA** UCSD **U** Colorado **U Maryland U** Rochester **U** Washington **U Wisconsin**

Recent EBW Emission Results on NSTX

Supported by

S.J. Diem¹, J.B. Caughman², G. Taylor¹, T.S. Bigelow², P. Efthimion¹, R.W. Harvey³, B.P. LeBlanc¹, C.K. Phillips¹, J. Preinhaelter⁴, S.A. Sabbagh⁵, J. Urban⁴, J.B. Wilgen²

⁽¹⁾ PPPL, ⁽²⁾ ORNL, ⁽³⁾ Comp-X,
 ⁽⁴⁾ Czech Inst. Plasma Physics, ⁽⁵⁾ Columbia U.

49th APS-DPP Meeting

Nov. 12-16, 2007 Orlando, Florida

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokvo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA, Frascati CEA. Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

Office of

Science

EBW research objective to assess ability of EBWCD to generate off-axis stabilizing current in ST-CTF

- Modeling shows adding
 1 MA of off-axis EBWCD to
 ST-CTF plasma significantly
 increases stability:
 - $-\beta_n$ increases from 4.1 to 6.1
 - β_t increases from 19% to 45%
- Need efficient coupling of RF power to EBWs
 - Assess oblique O-X-B coupling by measuring B-X-O emission (EBE)

Remotely steered EBW antennas allow mapping of f_{ce} & 2 f_{ce} B-X-O emission window

- ±10° scan in poloidal and toroidal directions possible between shots
- 30°-40° magnetic field pitch at edge determines window location
- Low density scale length, L_n, improves B-X-O coupling
- Measuring efficient B-X-O transmission of EBE from H-mode plasmas supports future 28 GHz EBWH experiments on NSTX
- Recently added lithium conditioning capability provides tool to vary edge conditioning and its affect on B-X-O transmission efficiency

Previously measured H-mode B-X-O transmission efficiency < 30%

EBE simulations suggest low B-X-O emission from H-mode in 2006 due to EBW collisional damping

- Emission from f_{ce}, 2f_{ce}
 exhibited rapid decay
 after L-H transition
- Simulated B-X-O EBE T_{rad} ~ 0.8 keV for 24 GHz, measured T_{rad} < 0.2 keV:
 - EBE simulation uses
 EFIT magnetic equilibrium and measured T_e, n_e

 Including collisional model (with Z_{eff}=2) results in closer agreement to measured T_{rad}

Edge lithium conditioning may reducing edge collisionality

EBE transmission efficiency increased with lithium evaporation rate

Lithium conditioning increases T_e and reduces L_n near B-X-O mode conversion layer

- 28 GHz mode conversion (MC) layer typically between R=144 cm and R=151 cm
- At t=0.3 s, T_e at B-X-O MC layer increased from 10 eV to 30 eV when Li evaporation rate increased from 0 to 19 mg/min
 For T_e < 20 eV, EBW collisional damping becomes significant

Good T_{rad} agreement with EBE simulation in highest Li evaporation rate case for $2f_{ce}=28$ GHz

For 19 mg/min of Li conditioning, T_e near MC may be high enough to avoid EBW collisional damping before B-X-O conversion

Angle of maximum B-X-O transmission consistent with theory

- Repeated target plasma, ($I_p = 0.9$ MA, $T_e(0) \sim 1$ keV) with Li conditioning
- Experimental B-X-O transmission efficiency:

$$Transmission_{EBW} = \frac{T_{rad}(measured)}{T_{e,Thomson}(R_{emission})}$$

- Maximum measured transmission efficiencies:
 - 62% for f_{ce}=18 GHz near axis emission
 - 49% for 2f_{ce}=28 GHz near axis emission

Significant improvement in EBW transmission efficiency observed with Li edge conditioning

- EBE simulations support previously measured low B-X-O emission due to EBW collisional damping in plasma edge
- Li conditioning significantly increased measured EBE transmission efficiency
- Highest measured EBW transmission efficiency for H-mode plasmas now 50-60% with Li edge conditioning
- EBW emission measurements support the design of planned NSTX 28 GHz EBW heating system
- EBW heating experiments may have decreased collisional damping
 - Parasitic heating effects may increase edge T_e

For more details, see TP8.00103 & TP8.00104 Thursday AM

Supporting Slides

T_e decrease in 2006 H-mode observed to coincide with T_{rad} decrease

EBE transmission efficiency increased with Li evaporation rate for f_{ce}=18 GHz

- 0 mg/min of Li (124284)
 11 mg/min of Li (124290)
 19 mg/min of Li (124309)
- Measured T_{rad} increased from 200 eV to ~ 400 eV
- Transmission efficiency
 increased
 - − From 20% → 60% for f_{ce} =18 GHz
 - − From $20\% \rightarrow 50\%$ for $2f_{ce}=28$ GHz

Li conditioning $\uparrow T_e \& \downarrow L_n$ near mode conversion layer

NSTX

Better T_{rad} agreement with EBE simulation in highest Li evaporation rate case for $f_{ce} = 18$ GHz

- For highest Li evaporation rate, 19 mg/min
 - Measured T_{rad}~0.4 keV, simulated T_{rad}~0.6 keV
- For 0 mg/min
 - Measured T_{rad}~0.1 keV, simulated Trad ~0.4 kev

