

Recent results from MAST spherical tokamak A. R. Field for the MAST team

Overview:

- Technical enhancements
- Recent results
- Future plans

49th Annual Meeting of DPP, Orlando, Florida

Technical enhancements

MAST Parameters

R = 0.85 m, a = 0.65 m (A ≥ 1.3)
κ = 2.5 (2.6), δ = 0.5 (0.5)
$I_p \le 2$ MA (1.4 MA), B_t = 0.52 T
$P_{NBI} \le 5 \text{ MW}$ (3.8 MW to date)
Pulse duration \leq 5 s (0.7 s)

PINI source

PINI beam path

Recent enhancements include:

- PINI NBI source $P_{inj} \le 2.5 \text{ MW}$, $E_0 \le 75 \text{ keV}$, $t_{inj} \le 5 \text{ s}$
- 28 GHz, 150 kW EBW start-up system
- Prototype TAE coil system, 3 i-coils
- High-resolution edge Doppler spectroscopy system
- Trial BES turbulence diagnostic

49th Annual Meeting of DPP, '07, Orlando

Extension of confinement database

- Database extended to higher $I_{\rm p} \leq$ 1.2 MA, higher power and focusing on H-mode
- + I_p scaling in H-mode to be determined but weaker than in L-mode, $\tau_{\text{E,L}} \propto I_p^{0.96}$
- Strong B_t scaling evident at constant I_p as on NSTX

Pellet deposition

- Top/outboard launch, \leq 6 pellets, 240-450 m/s
- Shallow injection radius mimics ITER situation

- Simulation requires ∇B drift
- Distinct zone with ∇n_e > 0 and increased ∇InT_e
- Modelling with GS2 and CUTIE
- Favourable inward turbulent transport

Pellet retention - ITER fuelling prediction

ITER Predictions:

- Normalised deposition radius ρ_{pel} similar to ITER value
- Measurement of τ_{pel}/τ_E allows prediction of τ_{pel} for ITER
- \textbf{r}_{pel} and τ_{pel} determine the fuelling rate Φ_{pel}
- Predicted $\Phi_{pel} \sim 70$ Pa m³s⁻¹ for steady-state density
- 70% of design value of ITER steady-state particle throughput

Off-axis NBCD studies

- Exploratory studies of off-axis NBCD in vertically displaced SND discharges
- Extended to higher power and duration in 2007

- 500 ms flat-top
- 350 ms H-mode
 - (limited by I²t and NBI)
- Sustained $\beta_{\text{N}} \sim 3.5\text{-}4.0$

Off-axis NBCD studies

TRANSP simulation

- NBI driven current fraction, $I_{NBCD}/I_{p} \sim 30\%$
- Anomalous fast-ion diffusion 0.5 m²s⁻¹ required
- NBCD reduced by 10% but current stays off-axis
- Two PINI sources and MSE in 2008

L-SND (3.6 MW NBI)

28 GHz EBW start-up system

 $P_{EC} \sim 100 kW$, 28GHz

EBW + solenoid assist

- Up to 33 kA from EBW + vertical field ramp (no solenoid)
- Up to 55 kA from EBW + limited solenoid flux (0.5% of full swing)

TAE damping rate measurements

TAE Coil

2007: Trial with 3 lower coils

- 10A AC \leq 0.5 MHz
- 2kA DC for ELM control
- n = 1, 2 or 3 mode spectrum

2008: 2×6 coil arrays (upper/lower)

49th Annual Meeting of DPP, '07, Orlando

Active AE excitation

BES System: L-mode turbulence measurement

Trial System:

- BES measures density fluctuations from D_{α} emission from excited atoms in heating beam
- 8 channel, 1 MHz system shares CXRS optics
- Characterise meso-scale turbulence, $k_{\perp}\rho_i < O(1)$

BES Upgrade 2008:

- Higher étendu (×50) in-vessel collection optics
- APD camera using Hamamatsu 8x4 array chip

Auto-correlation

- Amplitude higher at edge than core
- Correlation time: Edge $\tau_c < 100 \mu$ s, Core: $\tau_c \sim 10 \mu$ s

High-resolution edge Doppler spectroscopy

Velocity profiles – L/H-mode

- 120 LOS: \leq 64 toroidal, \leq 64 poloidal
- $B_{\theta} \sim B_{\phi}$ at edge in ST

Edge E_r profile (H-mode)

- $E_r \sim -10-15$ kV/m forms in ETB region
- V_{ϕ} and V_{θ} required to determine E_r E_r and ∇E_r increase with plasma current

49th Annual Meeting of DPP, '07, Orlando

Scaling of ELM properties with energy loss

Comparison of type I ELMs with different energy loss

□ ASDEX-U ◇ DIII-D △ JT-60U ○ JET

- The number and size of the filaments is similar for large or small type I ELMs
- The radial efflux of ELMs also depends weakly on the ELM size, $\lambda = v_r L_{||}/c_s$
- Important for determining the fraction of ELM energy to first wall of future devices

∆W/Wped

Technical developments for 2008-9

2nd PINI source

• $P_{NBI} \le 5 \text{ MW for 5 s}$

ELM coil system

- Two 6 i-coil arrays, 6kA turns
- 1 cm island width > pedestal width

TS Upgrade

- 8 NdYAG lasers, 30 Hz, 1.6 J
- 120 spatial points, 1 cm resolution

Multi-channel MSE

• 35 channels, 2.5 cm resolution

BES 2D imaging system

• 8x4 channel APD array camera

12 coil ELM control system

- Long-pulse DA system
- PC based digital control
- New NBI HVPS
- Higher power 28 GHz gyrotron (ORNL)
- Centre column chiller