

Beta Scaling and Momentum Transport Studies in NSTX

College W&M Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL **PPPL** PSI **Princeton U SNL** Think Tank. Inc. UC Davis **UC** Irvine **UCLA** UCSD U Colorado **U** Maryland **U** Rochester **U** Washington **U** Wisconsin

S.M. Kaye¹, W. Solomon¹, R.E. Bell¹, B.P. LeBlanc¹, F. Levinton², J.E. Menard¹, G. Rewoldt¹, S.A. Sabbagh³, W. Wang¹, H. Yuh²

¹ PPPL, Princeton Univ., Princeton, NJ
² Nova Photonics Inc., Princeton, NJ
³ Columbia University, NYC, NY

APS-DPP Meeting

Nov. 12-16, 2007 Orlando, Fla

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kvushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep

This Talk will Feature Highlights of Two Studies

- Dependence of energy confinement on beta
 - High priority ITPA task important to success of ITER AT scenario
 - Previous results mixed
 - Early JET, DIII-D with strong shaping showed little or no degradation
 - JT-60U, AUG with weaker shaping showed strong degradation
 - NSTX operates over a large range of beta
 - Few up to 10's of %
 - Can perform beta scans with different plasma shapes
- Momentum transport
 - High rotation rates observed on NSTX (M~0.5)
 - ExB shearing rates large enough to suppress low-k microturbulence
 - Experiments to study steady-state momentum transport
 - Use perturbation technique with n=3 field application to separate χ_{ϕ} from v_{pinch} and compare to pinch theories

Dimensionless Parameter Scans Have Addressed the Beta Dependence of Confinement

 $\bigcirc NSTX$

β-scan at fixed q, B_T (κ=2.1, δ=0.6)

- Factor of 2-2.5 variation in β_T across power scan (P_{ini}=2 to 6 MW)
- Small, Type V or no ELMs at <u>all</u> power at times of interest
- Little degradation of τ_E with β for these conditions
- β -degradation of τ_E found to be strong from statistical analysis of international H-mode database

Test Shape Dependence of Confinement Degradation With Beta

VSTX

- <u>κ=1.8-1.9, δ~0.4 (fixed, q, B_T)</u>
 - Power scan again used to produce variation of beta
 - v_e^* , ρ_e^* vary $\leq 20\%$ across scan

ELM severity increases with increasing power

• High frequency Type III ELMs at low power, Type I at high power

Beta Increases Weakly With Power For $\kappa=1.8$, $\delta=0.4$ Plasmas

Beta scaling depends on plasma shape through pedestal stability/ELM behavior

VSTX

Steady-State and Perturbative Momentum Confinement Studies on NSTX Have Started

Perturbative τ_{ϕ} , χ_{ϕ} Can be Obtained from Transient Application of nRMP

Significant inward pinch velocity

Inward pinch consistent with values from low-k turbulence theory

NSTX

Summary

- Degradation of τ_E with β_T varies with pedestal stability in differently shaped plasmas
 - No degradation in strongly shaped plasmas
 - Strong degradation in more weakly shaped plasmas tied to edge stability/ELMs
- Steady-state power balance and perturbative analyses indicate long momentum confinement times (>100 ms) and $\chi_{\phi} << \chi_{i}$
 - Momentum diffusivity decoupled from ion thermal diffusivity
 - $-\chi_{\phi} >> \chi_{\phi, neo}$
 - Strong inward pinch velocity inferred from perturbative analysis

What is source of momentum pinch in NSTX when low-k believed to be suppressed (higher-k electron modes)?

Related Presentations: Kaye et al., NM4.3 (Wed AM – miniconference), Davis et al, TP8.72 (Thurs AM – NSTX poster session)

NSTX