

Active Resistive Wall Mode Feedback with Expanded Sensors in NSTX

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U **Old Dominion U** ORNL **PPPL** PSI Princeton U SNL Think Tank. Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U** Wisconsin

S.A. Sabbagh¹, J.M. Bialek¹, R.E. Bell², D.A. Gates², B. LeBlanc², J.E. Menard², A.C. Sontag¹, A.H. Boozer¹, A.H. Glasser³, F. Levinton⁴, K. Tritz⁵, H. Yu⁴

¹Department of Applied Physics, Columbia University, New York, NY, USA ²Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA ³Los Alamos National Laboratory, Los Alamos, NM, USA ⁴Nova Photonics, Inc., Princeton, NJ, USA ⁵Johns Hopkins University, Baltimore, MD, USA

49th Annual Meeting of the Division of Plasma Physics American Physical Society

November 12, 2007 Orlando, FL

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kvushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA. Frascati CEA, Cadarache **IPP. Jülich IPP.** Garching ASCR, Czech Rep **U** Quebec

Increase reliability and understanding of RWM active control

Motivation

- RWM growth leads to beta collapse, disruption
- High reliability control needed for future burning plasma devices (at low or high plasma rotation, ω_φ)

Outline

- Analysis of RWM control system performance
- RWM control experiments using expanded magnetic sensor combinations
- Variations for improved control

- □ Upper B_p sensors for feedback
- Non-resonant magnetic braking
- n = 2 RWM amplitude rises, remains stable while n = 1 stabilized
- □ Plasma $\beta_N > 5.5$ reached
 - S.A. Sabbagh, et al., PRL 97, 045004 (2006).

RWM control system uses expanded sensor set

- Stabilizer plates for kink mode stabilization
- External midplane control coils closely coupled to vacuum vessel
- Varied sensor combinations used for feedback
 - □ 24 upper/lower B_p: (B_{pu}, B_{pl})
 - □ 24 upper/lower B_r: (B_{ru}, B_{rl})
- □ Midplane $n = 1 B_r$ sensors
 - Outboard of control coil
 - Not used for feedback to date

VALEN code reproduces B_{pu} sensor feedback performance

- New model simulates experiment
 - Upper B_p sensors located as on device
 - Compensation of control field from sensors
 - Experimental equilibrium reconstruction (including MSE data)
 - Proportional gain
- Advanced feedback control may significantly improve future performance
 - Optimized state-space controller with B_{pu} sensors may stabilize β_N/β_N^{wall} < 95%

Katsuro-Hopkins NP8.00125

Varying relative phase shows positive/negative feedback

Combination of upper/lower Bp sensors used to improve control

- Feedback phase scan using B_{pu} and B_{pl}
 - Best phase shown 90°, not optimal configuration
 - Reduction in ∆B_{pu}ⁿ⁼¹ growth rate
 - Spatial phase offset between upper/lower B_p sensor flux can improve feedback
- Control using B_{pu} and B_{pl} also reduces ΔB_{r}
 - Correlation of $β_N$ collapse and $ΔB_{ru}^{n=1}$ amplitude
 - \Box Attempted feedback on ΔB_r
 - RWM control not reliable
 - Reduced ∆B_r successfully
 - Fast n = 1, 2 RWM onset $(\gamma \tau_w \sim 1)$ occurs

Feedback control modifications used successfully at moderate ω_{ϕ}

Extra Slides

Feedback on B_r sensors alone insufficient for control

RWM actively controlled using upper Bp sensors

- Plasma rotation ω_{ϕ} reduced by non-resonant n = 3magnetic braking
 - □ Large ω_{ϕ} range produced

Stabilized period has

- □ Long duration > $90/\gamma_{RWM}$
- Exceeds DCON $\beta_N^{no-wall}$ for n = 1 and n = 2
- n = 2 RWM amplitude increases, mode remains stable while n = 1 stabilized
- n = 2 internal plasma mode seen in some cases

□ Plasma β_N > 5.5 reached