Investigation of Transient Phenomena on MAST using Thomson Scattering

R. Scannell

M.J. Walsh, M. Dunstan and the MAST Team

EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK

Overview

\square The aim of this presentation is to outline the study of transient physics using Thomson scattering on MAST:
> Sawteeth
$>$ Pellets
>Pressure gradient
$>$ Filaments
\square And to show how these impact on the design of the planned TS upgrade

TS System Layout

TS System Layout

Core Nd:YAG System
>19 points
$>25-40 \mathrm{~mm}$ resolution
$>200 \mathrm{~Hz}$
>700 p.e./cm/1019
$>$ Burst of 4 lasers

TS System Layout

Core Nd:YAG System >19 points
$>25-40 \mathrm{~mm}$ resolution $>200 \mathrm{~Hz}$
>700 p.e./cm/1019
>Burst of 4 lasers

Ruby Laser System >300 points
$>10 \mathrm{~mm}$ resolution
> Once per shot
>2500 p.e./cm/1019

TS System Layout

Core Nd:YAG System >19 points
$>25-40 \mathrm{~mm}$ resolution $>200 \mathrm{~Hz}$
>700 p.e./cm/1019
$>$ Burst of 4 lasers

Ruby Laser System >300 points
$>10 \mathrm{~mm}$ resolution
$>$ Once per shot
>2500 p.e./cm/1019

Edge Nd:YAG System >16 points
$>10 \mathrm{~mm}$ resolution
$>200 \mathrm{~Hz}$
>2500 p.e./cm/1019

Sawteeth

Example of a typical transient measurement using the core Nd:YAG TS system.
$\square \quad$ Strongly off axis plasma, 20 cm below typical.
$\square \quad$ Plasma T_{e} collapses are particularly large during SND sawteeth. The average temperature collapse over the four sawteeth shown is 150 eV .

Sawteeth

\square Examining the radial profile for a single sawtooth shows the temperature collapses right across the plasma.

- The plasma edge has moved inwards by $\sim 50 \mathrm{~mm}$ wrt the pre-Sawtooth level.

Core TS data

- The profiles shown left were obtained over the course of a long ELM free Hmode during a high Beta campaign.

Edge density builds up over the course of the H-mode and becomes significantly higher than the core density.

Core TS data

H-mode - Inter ELM period

\square Profiles taken during the inter ELM period with laser separation of $\Delta_{T}=5 \mu \mathrm{~s}$.
\square Camera picture is taken during the inter-ELM.
\square No significant variation seen in the Thomson scattering n_{e} and T_{e} profiles. This is typical of the inter-ELM period.

Lasers grouped in time

H-mode ELMing

- laser separation: $\Delta_{T}=200 \mu \mathrm{~s}$
\square During the ELM there are large protrusions of the plasma edge from the pre-ELM LCFS.

ELM filaments

$\square \quad$ laser separation: $\Delta_{T}=5 \mu \mathrm{~s}$
\square As well as protrusions, filamentary structures are seen.
\square This figure shows the expulsion of a filamentary structure from the plasma at pedestal temperature.

Edge TS data

The resolution in the edge region is sufficient to resolve the pedestal gradients.
$\square \quad$ This data is used to perform MHD stability analysis in codes such as ELITE [S. Saarelma]

Edge TS data

\square The edge radial electric field is calculated from Helium
\square TS Edge data is used to calculate the Helium emissivity to determine the Helium density profile diamagnetic contribution to E_{r} [H. Meyer IAEA-TM 2007]

Edge TS data

SOL temperature and density data are used in OSM - Eirene to calculate ionisation in the pedestal region.
Here images of D-alpha obtained from experiment are compared with simulation results.
[S. Lisgo EPS 2007]

Pellet Deposition

- Pellet deposition profiles have been measured using the Ruby laser system.
\square Here, three profiles are shown during the pellet ablation process. The timing with respect to pellet injection is obtained from interferometer data. (TS system triggered by the pellet).
- Profiles approximately constant along flux surfaces.

Ruby Thomson Scattering Results

ITB measured in counter injection shot

- 3/2 island structure measured in the Ruby profile
\square Currently these profiles can only be measured once per shot.
\square We want to measure similar profiles using the Upgraded Nd:YAG system throughout a single MAST shot.

Proposed Upgrade, what to measure?

Proposed Upgrade, what to measure?

Proposed Upgrade, what to measure?

$$
\begin{aligned}
& \text { (200 } \\
& \text { NTMs • gradients } \\
& \text { ITBs } \\
& \text { - ELM filaments }
\end{aligned}
$$

Proposed Upgrade, what to measure?

Inboard \& Outboard:

- Plasma Rotation from density asymmetry
- Constraining EFIT

Proposed Upgrade, what to measure?

Core:

- density peaking

Inboard \& Outboard:

- Plasma Rotation from density asymmetry
- Constraining EFIT

How to achieve this?

- The upgrade aims to provide better spatial resolution at lower error by:
- Doubling the solid angle collected
- Increasing the laser energy
- To increase the laser energy and increase the time resolution:
- Switch from $4 \times 50 \mathrm{~Hz} 1.2 \mathrm{~J}$ lasers to $8 \times 30 \mathrm{~Hz} 1.6 \mathrm{~J}$
- Also allows for increased numbers of lasers in bursts

Questions?

The TS Upgrade is a collaboration between UKAEA, University of York and University College Cork.

This work is funded jointly by the UK Engineering and Physical Sciences Research Council and EURATOM.

Pellet Deposition

...... ablation only
ablation + gradB drift

The pellet density profile cannot be explained by simple neutral gas and plasma shielding models.
A model using both ablation and GradB drift is required to obtain density profiles similar to experiment.
[M. Valovic, L. Garzotti IAEA TM 2007]

ELM filaments

$\square \quad$ laser separation: $\Delta_{T}=5 \mu \mathrm{~s}$
\square As well as protrusions, filamentary structures are seen.
\square Here 3 sets of filaments ordered by distance from pre-ELM LCFS
\square It may be seen that the filament temperature falls off rapidly as the filaments move from the plasma edge.

