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Overview

� The aim of this presentation is to outline the study of transient 

physics using Thomson scattering on MAST:

�Sawteeth

�Pellets

�Pressure gradient

�Filaments

� And to show how these impact on the design of the planned 

TS upgrade
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Sawteeth

Example of a typical transient measurement using the core 

Nd:YAG TS system. 

� Strongly off axis plasma, 20cm below typical.

� Plasma Te collapses are particularly large during SND 

sawteeth. The average temperature collapse over the 

four sawteeth shown is 150eV.
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Sawteeth

� Examining the radial profile for a single sawtooth

shows the temperature collapses right across the 

plasma.

� The plasma edge has moved inwards by ~50mm wrt

the pre-Sawtooth level.
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Core TS data

� The profiles shown left were obtained 

over the course of a long ELM free H-

mode during a high Beta campaign. 

� Edge density builds up over the course of 

the H-mode and becomes significantly 

higher than the core density. 
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Core TS data

� One of the primary uses of TS data is to 

input to modelling codes.

Core TS data is also routinely 

used in TRANSP analyses

Plasma Pe measurement is used to 

act as a constraint to a kinetic EFIT
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H-mode - Inter ELM period

� Profiles taken during the inter ELM period  

with laser separation of ∆T = 5µs.

� Camera picture is taken during the inter-ELM.

� No significant variation seen in the Thomson 

scattering ne and Te profiles. This is typical of 

the inter-ELM period.  
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H-mode ELMing

� laser separation: ∆T = 200µs

� During the ELM there are large protrusions of the plasma edge from the 

pre-ELM LCFS. 
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ELM filaments

� laser separation: ∆T = 5µs

� As well as protrusions, filamentary structures are seen. 

� This figure shows the expulsion of a filamentary structure from the plasma 

at pedestal temperature. 
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Edge TS data

� The resolution in the edge region is 

sufficient to resolve the pedestal gradients. 

� This data is used to perform MHD stability 

analysis in codes such as ELITE

[S. Saarelma]
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Edge TS data

� The edge radial electric field is calculated from 

Helium

� TS Edge data is used to calculate the Helium 

emissivity to determine the Helium density 

profile diamagnetic contribution to Er

[H. Meyer IAEA-TM 2007]
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Edge TS data

� SOL temperature and density 

data are used in OSM – Eirene to 

calculate ionisation in the 

pedestal region.

� Here images of D-alpha obtained 

from experiment are compared 

with simulation results.

[S. Lisgo EPS 2007]
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Pellet Deposition

� Pellet deposition profiles have been 

measured using the Ruby laser system.

� Here, three profiles are shown during the 

pellet ablation process. The timing with 

respect to pellet injection is obtained from 

interferometer data. (TS system triggered 

by the pellet).

� Profiles approximately constant along flux 

surfaces.



Ruby Thomson Scattering Results

� Currently these profiles can only be measured once per shot. 

� We want to measure similar profiles using the Upgraded Nd:YAG system 

throughout a single MAST shot. 

� 3/2 island structure 

measured in the Ruby 

profile

� ITB measured in 

counter injection shot
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How to achieve this?

� The upgrade aims to provide better spatial resolution at lower error by:

� Doubling the solid angle collected

� Increasing the laser energy

� To increase the laser energy and increase the time resolution:

� Switch from 4 x 50Hz 1.2J lasers to 8 x 30Hz 1.6J

� Also allows for increased numbers of lasers in bursts
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Questions?

This work is funded jointly by the UK Engineering and Physical 

Sciences Research Council and EURATOM.

The TS Upgrade is a collaboration between UKAEA, University of York 

and University College Cork.



� The pellet density profile cannot be explained by 

simple neutral gas and plasma shielding models. 

� A model using both ablation and GradB drift is 

required to obtain density profiles similar to 

experiment.

[M. Valovic, L. Garzotti IAEA TM 2007]

Pellet Deposition



ELM filaments

� laser separation: ∆T = 5µs

� As well as protrusions, filamentary structures are seen. 

� Here 3 sets of filaments ordered by distance from pre-ELM LCFS

� It may be seen that the filament temperature falls off rapidly as the 

filaments move from the plasma edge. 
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