

Investigation of Transient Phenomena on MAST using Thomson Scattering

R. Scannell M.J. Walsh, M. Dunstan and the MAST Team

EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK

49th annual meeting of the Division of Plasma Physics, Orlando Florida

Overview

The aim of this presentation is to outline the study of transient physics using Thomson scattering on MAST:

- Sawteeth
- > Pellets
- Pressure gradient
- ➢ Filaments

And to show how these impact on the design of the planned TS upgrade

Core Nd:YAG System > 19 points > 25-40mm resolution > 200Hz > 700 p.e./cm/10¹⁹ > Burst of 4 lasers

Core Nd:YAG System > 19 points > 25-40mm resolution > 200Hz > 700 p.e./cm/10¹⁹ > Burst of 4 lasers Ruby Laser System

- >300 points
- ▶10mm resolution
- Once per shot
- >2500 p.e./cm/1019

Core Nd:YAG System > 19 points > 25-40mm resolution > 200Hz > 700 p.e./cm/10¹⁹ > Burst of 4 lasers Ruby Laser System
> 300 points
> 10mm resolution
> Once per shot

>2500 p.e./cm/10¹⁹

Edge Nd:YAG System > 16 points > 10mm resolution > 200Hz > 2500 p.e./cm/10¹⁹

Example of a typical transient measurement using the core Nd:YAG TS system.

Strongly off axis plasma, 20cm below typical.

Plasma T_e collapses are particularly large during SND sawteeth. The average temperature collapse over the four sawteeth shown is 150eV.

Sawteeth

Examining the radial profile for a single sawtooth shows the temperature collapses right across the plasma.

The plasma edge has moved inwards by ~50mm wrt the pre-Sawtooth level.

Core TS data

The profiles shown left were obtained over the course of a long ELM free Hmode during a high Beta campaign.

Edge density builds up over the course of the H-mode and becomes significantly higher than the core density.

Core TS data

H-mode - Inter ELM period

- **Profiles taken during the inter ELM period** with laser separation of $\Delta_T = 5\mu s$.
- Camera picture is taken during the inter-ELM.
- No significant variation seen in the Thomson scattering n_e and T_e profiles. This is typical of the inter-ELM period.

H-mode ELMing

- laser separation: $\Delta_T = 200 \mu s$
- During the ELM there are large protrusions of the plasma edge from the pre-ELM LCFS.

ELM filaments

- **laser separation:** $\Delta_T = 5 \mu s$
- As well as protrusions, filamentary structures are seen.
- This figure shows the expulsion of a filamentary structure from the plasma at pedestal temperature.

- SOL temperature and density data are used in OSM – Eirene to calculate ionisation in the pedestal region.
- Here images of D-alpha obtained from experiment are compared with simulation results.
 [S. Lisgo EPS 2007]

Pellet Deposition

- Pellet deposition profiles have been measured using the Ruby laser system.
- Here, three profiles are shown during the pellet ablation process. The timing with respect to pellet injection is obtained from interferometer data. (TS system triggered by the pellet).
- Profiles approximately constant along flux surfaces.

- Currently these profiles can only be measured once per shot.
- We want to measure similar profiles using the Upgraded Nd:YAG system throughout a single MAST shot.

Constraining EFIT ۲

Core:

Constraining EFIT \bullet

•

How to achieve this?

- The upgrade aims to provide better spatial resolution at lower error by:
 - Doubling the solid angle collected
 - Increasing the laser energy
- □ To increase the laser energy and increase the time resolution:
 - Switch from 4 x 50Hz 1.2J lasers to 8 x 30Hz 1.6J
 - Also allows for increased numbers of lasers in bursts

Questions?

The TS Upgrade is a collaboration between UKAEA, University of York and University College Cork.

This work is funded jointly by the UK Engineering and Physical Sciences Research Council and EURATOM.

Pellet Deposition

The pellet density profile cannot be explained by simple neutral gas and plasma shielding models. A model using both ablation and *Grad*B drift is required to obtain density profiles similar to experiment.

[M. Valovic, L. Garzotti IAEA TM 2007]

ELM filaments

- **l**aser separation: $\Delta_T = 5\mu s$
- As well as protrusions, filamentary structures are seen.
- Here 3 sets of filaments ordered by distance from pre-ELM LCFS
- It may be seen that the filament temperature falls off rapidly as the filaments move from the plasma edge.

