

Internal transport barriers in NSTX reversed-shear plasmas

College W&M Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U ORNL PPPL** PSI **Princeton U SNL** Think Tank, Inc. **UC Davis UC** Irvine **UCLA** UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

H.Y. Yuh¹, F.M. Levinton¹, R.E. Bell², J.C.Hosea², S.M. Kaye², B.P. LeBlanc², E. Mazzucato², H.K. Park², D.R. Smith²

¹ Nova Photonics Inc., Princeton, NJ
 ² PPPL, Princeton Univ., Princeton, NJ

York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache IPP, Jülich **IPP, Garching** ASCR, Czech Rep

Culham Sci Ctr

U St. Andrews

APS-DPP Meeting

Nov. 11-15, 2007 Orlando, Fla

16 ch MSE constrains reconstruction of dynamic NSTX current profiles

- Low field Lyot filter based MSE system expanded to 16 channels for 2007
- Views heating beam, diagnoses a high percentage of NSTX plasmas
- Provides full coverage from edge to well past magnetic axis

High core T_e , T_i observed in reversed shear, L-mode plasmas at 5.5kG

- Reversed shear plasmas optimized using beam timing
- Electron temperature gradients increased using additional high harmonic fast wave heating
- Data taken from low MHD activity portion of discharge
- ITB profiles
- Correlation between magnetic shear (\$=r/q dq/dr) and T_e gradient (R/L_{Te}=R/T_e dT_e/dr)
- Correlation between toroidal velocity (E×B) shear and T_i gradient
- Negative shear suppression of ETG fluctuations

High core T_e , T_i observed in reversed shear, L-mode plasmas at 5.5kG

- Reversed shear plasmas optimized using beam timing
- Electron temperature gradients increased using additional high harmonic fast wave heating
- Data taken from low MHD activity portion of discharge

• ITB profiles

- Correlation between magnetic shear (\$=r/q dq/dr) and T_e gradient (R/L_{Te}=R/T_e dT_e/dr)
- Correlation between toroidal velocity (E×B) shear and T_i gradient
- Negative shear suppression of ETG fluctuations

q and j profiles of reversed shear profiles

- Minimization of flux consumption on NSTX plasma startup favors low $\ell_{\rm i}$, reversed shear plasmas

Internal transport barrier in T_e , T_i , v_{ϕ} profiles

- Steeper core gradients in electron and ion temperatures, and toroidal velocity
- Electron density evolution essentially unchanged with ITB
- NSTX profile diagnostics
 - 51 channel CHERS
 - 30 channel TS
 - 16 channel MSE

Ion ITB occurs at maximum E×B shear

- R/L_{Te} highly correlated in location with \$ minima location
 - Magnetic shear important for improvement in electron transport
- R/L_{Ti} not aligned with \$\$ minima, shows average separation
 - Magnetic shear less important for ion transport
- Ion ITB better aligned with velocity shear
 - Velocity (E×B shear) important in suppressing ion transport

Low transport in RS plasmas even when ETG critical gradients exceeded

- GS2 calculated critical T_e gradients exceeded in RS
- Positive shear does not reach similar gradients
- Consistent with Jenko, Dorland nonlinear GS2 predictions [PRL 89, (2002)]

Decrease in \$ suppresses ETG turbulence

Negative magnetic shear \rightarrow electron ITB E×B shear \rightarrow ion ITB

- Electron ITB location strongly correlated with minima of negative magnetic shear
- Ion ITB does not occur at \$ minima, but at maximum E×B shear location
- Critical ETG gradients exceeded in electron
 ITB region without corresponding transport
- Measured high-k fluctuation suppression with deepened shear reversal
- Confirms nonlinear GS2 predictions of ETG mode amplitudes for negative magnetic shear