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Recent NSTX results probe Alfvén Cascade mode
physics at high  and high ¢

@ NsTx

* Motivation is importance of Alfvén Cascade (AC) modes™ in
reverse-shear (RS) plasmas

« ACs transport fast-ions (v;,,/v, = 1) — impact plasma performance

on

* RS is advanced scenario for ITER & Component Test Facility
« AC modes diagnose q,,;,(t) (“MHD spectroscopy”)
* high B and high ¢ ( = a/R) are relatively unexplored regimes for AC modes

 Experimental results include

e characterization of AC mode spectra and structure at low and high g at high ¢
* observation of fast-ion loss associated with AC modes

e Experimental results are shown to be consistent with
predictions of NOVA-K stability code

e comparison also extends understanding of experimental results

*a.k.a. reverse-shear Alfvén eigenmodes °



AC spectrum evolution at low f is distinctive and well-known

@ NsTx
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* low B AC spectrum easily recognizable

e large upward frequency sweeps, starting at low f
« toroidal mode numbers appearing in sequences

*seen on conventional tokamaks JT-60U, TFTR, JET, DIII-D, Alcator C-MOD

 NSTX low 8 AC spectrum similar to conventional tokamaks
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Current understanding of AC modes: q,,;,(f) evolution
causes AC frequency to sweep up @ NsTX

conversion to TAE

// s ~

o= kv, k=(mlq,;,-n)/R

B>0
0 i \“’2 = kvt 0%geot 0%y '
m q.min m-1/2
n

N decreasing —

* ACs shear Alfven eigenmodes (o = kv, ) localized to q,,;,

*single n & ~ single m = k =0 when q,;, = m/n
*Ak, > 0 for Aq,,;, < 0: dq; /dt < 0 = frequency sweeps up

* B> 0 reduces relative sweep — “geodesic curvature” & VS
* gmin May be deduced from spectrum: “MHD spectroscopy”

Kramer et.al., Plasma Phys. Contr. Fusion 46, L23 (2004); G.Y. Fu et.al.,, Phys. Plasmas 13, 052502 (2006);

G. J.
B. N. Breizman et.al., Phys. Plasmas 12, 112506 (2005); Gorelenkov et.al., Plasma Phys. Contr. Fusion, 48, 1255 (2006);



NSTX* is well suited to study AC modes in little-
explored high 8 and high £ regimes
@ NsTx

e Reverse-shear demonstrated in NSTX

o verified via Motional Stark Effect (MSE)t

*NSTX is only ST with MSE — useful since AE
spectrum very sensitive to q profile

e AC modes observed in NSTX at
B, up to 25 % — much higher
than conventional tokamaks

. . . Major Radius: Ro=1m

« AC modes studied extensively in | Minor Radius: a=065m
. Inverse Aspect Ratio: £ =a/R = 0.65
conventional tokamaks (very low | g aion =
B, low g), but very little in STs$ Triangularity 6=0.35

*NSTX achieves low f3, — isolates ¢ effects

*see NSTX Poster (TP8) and Oral (CO3) sessions  SAC modes observed in MAST; S. D. Pinches, et al.,
Tsee TP8.00076, F. Levinton Proc. of 21st IAEA Fusion Energy Conf. 2006, EX/7-2Ra g



Comprehensive set of experimental and theoretical
tools used to study AC Modes in NSTX

@ NsTx

* NSTX features diagnostics to study AC
I modes and impact on plasma

« Equilibrium: MSE (B pitch), MPTS (T_, n.), CHERS (T, v,_,)
1! e Mode structure: reflectometers (local on), Mirnov coils

e Fast ion population: Neutron detectors, sFLIP (fast-ion
loss detector)

o 8
e Suite of codes applicable to AC modes in
i1 NSTX equilibrium

e Equilibrium & beam deposition: LRDFIT, EFIT, TRANSP
 AC mode structure, stability and growth rates: NOVA-K
* Synthetic diagnostics: reflectometer modeling

e Detailed comparison of AC experiment
and theory possible



AC mode studied over range of Sin He L-mode plasmas

* Reverse shear, lower single
null

*Bror =0.45T,1 = 0.8 MA

2 MW Neutral beam heating
* 90 keV, Deuterium

* ﬂtor at qmin UP to 11%
(including fast ions)
°n,~1-3.5x10"" m-3
«T,,~0.5-1keV

* n, and T strongly peaked

@ NSTX
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Distinctive AC spectrum evolution significantly changed
by increasing

@ NsTx
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* Increasing S (and VJ) significantly reduces frequency
sweep — consistent with theory

* Do unrecognized AC modes occur at very high S?

 AC modes historically not observed in STs: suppressed or unrecognized?
* Theory predicts suppression due to Vj effects — area for future study



At low 5, AC mode frequency sweeps from f, to f;,.,
consistent with theory

@ NsTx

NSTX 120103

N ,
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VB modification of AC frequency sweep is

substantial at high

.ﬂtor~ 11% atq,,;,att=0.27 s

 minimum AC frequency (f,_;.)
sensitive to n — expected V3
effect*

.fmin > fgeo
of

min

- fioasn—1

*G. J. Kramer, Plas. Phys. Contr. Fus. 46, L23 (2004)
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At high B, AC mode structure measurement
consistent with peaking near q,,;,

@ NsTx
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e Internal structure of AC modes measured with reflectometers
o q profile from similar shot shows minimum at R ~1.25 m.

e Structure consistent with localization at q,;,

» Stronger localization for highest n mode, as expected from theory
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Polarization of AC 0B at plasma edge is consistent
with “shear Alfvén wave” localized near q

min

* For shear Alfvén waves: 6B 1 B,

« AC mode localized around q,,;,
(R~ 125 cm) = expect (B, at R ~
125 cm) L 6B,

e AC polarization measured at

plasma edge — gives direction of 041 location o tion
oB o | [
R e R ) U et
 from MSE and edge Mirnov coils: © 0.2 T
B,(R=124 cm) L 6B, . -B,/B,
100 120 140

R (cm) 12



AC modes in NSTX cause fast ion loss

* Direct loss of fast-ions from
plasma measured at wall with
sFLIP*

*sFLIP is spatially localized — doesn’t
detect all lost fast-ions

 Multi-mode “avalanche”
accompanied by spike In
loss ratet

* Increasing loss rate
simultaneous with n=3 AC
mode

* Loss rate decreases when mode
converts to TAE (mode frequency
saturates)

*see TP8.00082, D.S. Darrow;
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@ NsTx
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q,.., €volution determined from AC spectrum at low

@ NsTx
_ For low f:
* q,..,(f) determined from AC
mode using low S relation: |
w — k V qmin — mVAlfve’n (nVAlfve’n + R(wlfwde o wiin 1/2)
I"A
«AC fonly gives q,,,;, sweep — not
after conversion to TAE 2.0 R e :

* n measured, m chosen for

consistency E\é:

* 4,..,(f) determined by MSE

e Multiple similar shots averaged E
O

* MSE q,,,(f) consistent with  '°|
determination from AC
modes .
0.20 0:25 0.30 0.35
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MHD spectroscopy works even at high f —
q,,i, determined from AC spectrum

@ NsTx
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* n measured, m chosen: (m,n) = (5,2), (4,2)&(2,1), (5,3), (3,2), (4,3), (5,4)
*®,.;, from observation
* Doppler correction from rotation near q,;,, R~ 1.25 m

Inferred q,,;,(f) consistent with q, ;. from MSE in similar shot
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NOVA-K* code explores high B AC physics

@ NsTx

e Linear, ideal MHD, hybrid/kinetic code.

« Computes Alfvén eigenmode (AE) structure,
frequency, growth

o fast ion treated perturbatively
« “Chu” filtering schemet eliminates acoustic singularities
» geodesic curvature, S effects included

e Success demonstrated at predicting mode structure
and frequency at low S and low ¢

« AC, TAE modes in DIlI-D (Van Zeeland'06 APS), JET (Kramer'05
APS), TAE/GAEs in NSTX (Gorelenkov'03 APS)

*C. Z. Cheng et al, Phys. Reports (A Review Sec. of Phys. Letters.), 211, 1 (1992)

TM. S. Chu et al., Phys. Fluids B 4, 3713 (1992) 16



NOVA-K calculates local shear Alfvéen frequency

(a.k.a. “Alfvén continuum”*)
@ nNsTx

Qmin lOCALION <« upper TAE

continuum

7 Y

TAE gap

frequency

| Iowgr TAE
continuum

1

e Toroidal coupling of poloidal harmonics opens “TAE
gap” = TAEs live in gap

 AC mode lives above continuum at q,,,;, o ARTOOOT,



NOVA-K AC frequency is consistent with
observed mode frequency

@ NsTx
80f ; -
Expt. — Doppler ‘
* AC frequency sweep modeled by M
offsets to q profile 3:’: B .*.,./ﬁ(';:/‘
- experimental q and p profiles used =60} continuus ! .
. o interaction 'V
« NOVA-K and experimental £ | nteraction VJ |
- continuum -
frequency consistent frequency
*q,..,, assumed linear with time 40} _ _
* Doppler shift: v, at q . (valid?) 2.0 19 1.8
o ¢ =" “imin q,.., decreasing —p
o statistical error bars: Doppler + mode Af ,
’ Qmin ! 74 \ ',1.. au
e error neglects strong v’ ~ 0.5 kHz/cm 150! /ocatio -‘ q
. o , min
* NOVA-K frequency significantly = re 1.98
. 100 |
above continuum - Vj effect = '
(op
e continuum interaction near q,,;,~2 £ °° |
= NOVA-K frequency uncertain 0 L oy
0 sqrt(‘¥,,) 1




AC modes couple to other AEs at high £ and high S

@ NsTx
* AC linearly couples strongly to sy
other AEs in TAE gap* B, = 8% ]

*High ¢ widens gap = many modes in gap

* High £ and high g = stronger poloidal
coupling than conventional tokamaks

 other coupled /

« Strong coupling could lead to AEsinTAEgap -
00 02 04 06 08 1.0

enhanced transport Sqrt(¥,,)

* multiple f:ast-ion resona|.1ces L AC \ JET |

esuppression of ACs desirable _ B, = 0.8% ]

_ £=0.32

e Strong coupling enhances edge 6B .7} )

= Mirnov coils see AC modes | /‘ E

: i : : " : | other coupled -

* Mirnov coils relatively insensitive to ACs in L AEs in TAE gap ]
conventional tokamak : -

00 02 04 06 08 1.0
*see also M. A. Van Zeeland et al, Phys. Plasmas 14, 056102 (2007) sqrit’,,)



Measured AC fluctuation levels consistent with

NOVA-K calculation
@ NsTx
e on measured by 2 fixed frequency
reflectometers (O-mode) 1 O 86.084 kKHz
*horns 12 cm above midplane at R =1.71 m, - max(|on|)/n, = 0.2% ]
looking down 5.4 ;g _ 4;'\'%\;:221%?
* “synthetic diagnostic” applied to ?20.55— “S' P :
NOVA-K calculation P reﬂgctometer
©w T 1|84Vn |

 reflectometer model: 1-D along line of sight
* normalized for best fit

* Fluctuation levels roughly agree

*relative phase of measurement doesn’t fit

* Modeling is rough- e.g. no refraction, 2-D effects

* Physics missing in NOVA-K: kinetic effects,
rotation, up-down asymmetry

20



Increasing B promotes AC mode coupling of to edge AEs

@ NsTx

g, location

N
O
o

freq (kHz)
o
o

o

S
<—
=
%2
S~

* B scan performed by rescaling pressure
* Using experimental p and q profiles

* Increasing S elevates continuum near q,,,, raises AC
frequency into TAE gap

e Elevation into TAE gap = coupling with edge AEs

21



Conclusions

@ NsTx
 AC modes identified in low and high B NSTX plasmas

* AC frequency sweep reduction with increasing p suggests ACs may not be
recognized at sufficiently high

* ACs not observed at very high B (i.e. normal NSTX J)
« AC modes can cause fast-ion loss

 MHD spectroscopy works even at high S

 AC modes observed at high S consistent with theory and
NOVA-K calculation

* Changes in AC spectrum with increasing S consistent with theoretical g and
VB effects

* Observed structure and frequency consistent with NOVA-K calculation

* Ideal MHD modeling (NOVA-K) of ACs at high g and high ¢
indicates:

* V[ contributes significantly to frequency sweep reduction at high 8
e strong coupling to edge AEs = possible enhanced fast-ion transport

22



Future work

@ NsTx

e Detailed study of fast-ion transport cause by AC modes

 More detailed structure measurements — compare with
NOVA-K calculation

* Use all reflectometers
* Use interferometry, soft x-rays

* Explore V3 dependence of AC modes

eH-mode vs. L-mode

e Explore species contributions to geodesic coupling of ACs
(i.e. to specific heat, %)

 Determine conditions for suppression vs. lack of

recognition (i.e. severe sweep reduction)
23



See also ...

@ NsTx
e NSTX Poster (TP8) and Oral (CO3) sessions

e Assorted Fast-ion and AE presentations...

* XR1.00001: Instabilities Driven by Energetic Particles in Magnetized Plasmas

* C0O3.00007: Toroidal Alfvén Eigenmode Avalanches on the National Spherical Torus
Experiment

* TP8.00083: Neutral Particle Analyzer Vertically Scanning Measurements of MHD-
induced Fast lon Redistribution or Loss in NSTX

* TP8.00087: Development of a Fast-lon D-Alpha diagnostic for NSTX

* TP8.00085: Excitation of Beta-induced Alfvén-acoustic eigenmodes and qg-profile MHD
spectroscopy in NSTX

* TP8.00082: MHD Induced Neutral Beam lon Loss from NSTX
* TP8.00073: Beam Modulation Effects on NSTX lon Power Balance

* TO4.00003: Reversed shear Alfvén Eigenmodes in the frequency range of the
triangularity induced gap on JET

* NP8.00094: Mode structure and stability analysis of reversed shear Alfvén eigenmodes
with NOVA-K

* JP8.00088: Central Flattening of the Fast-lon Profile in Reversed-Shear Discharges
With Alfvén Eigenmode Activity

« NSTX Research Forum, Nov. 27-29, 2007 (nstx-forum-2008.pppl.gov) o



