UCLA

Supported by

Fusion Energy

College W&M **Colorado Sch Mines** Columbia U Comp-X FIU **General Atomics** INL Johns Hopkins U Lehigh U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL **PPPL** PSI **Princeton U** SNL Think Tank, Inc. UC Davis UC Irvine **UCLA** UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

Neal Crocker for the NSTX Group

Neal Crocker Physics & Astronomy Department University of California, Los Angeles

49th Annual Meeting of the Division of Plasma Physics

November 13, 2007 Rosen Centre Hotel Orlando, Florida

In collaboration with: R. Bell, H. L. Berk, D. S. Darrow, E. D. Fredrickson, N. N. Gorelenkov, W. W. Heidbrink, S. Kaye, G. J. Kramer, S. Kubota, F. M. Levinton, P. Lauber, B. LeBlanc, J. E. Menard, S. A. Sabbagh, H. Yuh and *the NSTX Team*

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching **IPP AS CR**

VSTX

Office of

Science

*Supported by U.S. DoE Grants DE-FG03-99ER54527 and DE-AC02-76CH03073

Recent NSTX results probe Alfvén Cascade mode physics at high β and high ε

- Motivation is importance of Alfvén Cascade (AC) modes* in reverse-shear (RS) plasmas
 - ACs transport fast-ions ($v_{ion}/v_A \gtrsim 1$) impact plasma performance
 - RS is advanced scenario for ITER & Component Test Facility
 - AC modes diagnose q_{min}(t) ("MHD spectroscopy")
 - high β and high ε (= a/R) are relatively unexplored regimes for AC modes
- Experimental results include
 - characterization of AC mode spectra and structure at low and high β at high ε
 - observation of fast-ion loss associated with AC modes
- Experimental results are shown to be consistent with predictions of NOVA-K stability code
 - comparison also extends understanding of experimental results

*a.k.a. reverse-shear Alfvén eigenmodes

AC spectrum evolution at low β is distinctive and well-known

• low β AC spectrum easily recognizable

- large upward frequency sweeps, starting at low f
- toroidal mode numbers appearing in sequences
- seen on conventional tokamaks JT-60U, TFTR, JET, DIII-D, Alcator C-MOD

• NSTX low β AC spectrum similar to conventional tokamaks

- ACs shear Alfvén eigenmodes ($\omega \approx k_{\parallel} v_{\rm A}$) localized to q_{min}

 - single *n* & ~ single $m \Rightarrow k_{\parallel} = 0$ when $q_{min} = m/n$ $\Delta k_{\parallel} > 0$ for $\Delta q_{min} < 0$: dq_{min}/dt < 0 \Rightarrow frequency sweeps up
- β > 0 reduces relative sweep "geodesic curvature" & $\nabla \beta$
- *q_{min}* may be deduced from spectrum: "MHD spectroscopy"

G. J. Kramer et.al., Plasma Phys. Contr. Fusion 46, L23 (2004); B. N. Breizman et.al., Phys. Plasmas 12, 112506 (2005);

G. Y. Fu et.al., Phys. Plasmas 13, 052502 (2006); Gorelenkov et.al., Plasma Phys. Contr. Fusion, 48, 1255 (2006);

NSTX* is well suited to study AC modes in littleexplored high β and high ε regimes

- Reverse-shear demonstrated in NSTX
 - verified via Motional Stark Effect (MSE)[†]
 - NSTX is only ST with MSE useful since AE spectrum very sensitive to q profile
- AC modes observed in NSTX at β_0 up to 25 % much higher than conventional tokamaks
- AC modes studied extensively in conventional tokamaks (very low β, low ε), but very little in STs[§]

• NSTX achieves low β_0 – isolates ε effects

*see NSTX Poster (**TP8**) and Oral (**CO3**) sessions †see TP8.00076, F. Levinton [§]AC modes observed in MAST; S. D. Pinches, et al., Proc. of 21st IAEA Fusion Energy Conf. 2006, EX/7-2Ra 5

STX

Major Radius:	R ₀ = 1 m
Minor Radius:	a = 0.65 m
Inverse Aspect Ratio:	ε = a/R = 0.65
Elongation	κ = 2
Triangularity	$\delta = 0.35$

Comprehensive set of experimental and theoretical tools used to study AC Modes in NSTX

NSTX

- NSTX features diagnostics to study AC modes and impact on plasma
 - Equilibrium: MSE (B pitch), MPTS (T_e, n_e), CHERS (T_i, v_{tor})
 - Mode structure: reflectometers (local δ n), Mirnov coils
 - Fast ion population: Neutron detectors, sFLIP (fast-ion loss detector)
- Suite of codes applicable to AC modes in NSTX equilibrium
 - Equilibrium & beam deposition: LRDFIT, EFIT, TRANSP
 - AC mode structure, stability and growth rates: NOVA-K
 - Synthetic diagnostics: reflectometer modeling

Detailed comparison of AC experiment and theory possible

AC mode studied over range of β in He L-mode plasmas

- Reverse shear, lower single null
- $B_{TOR} = 0.45 \text{ T}, I_p = 0.8 \text{ MA}$
- 2 MW Neutral beam heating •90 keV, Deuterium
- β_{tor} at q_{min} up to 11% (including fast ions) • n_{e0} ~ 1 – 3.5x10¹⁹ m⁻³ • T_{e0} ~ 0.5 – 1 keV
- n_e and T_e strongly peaked

- Increasing β (and $\nabla \beta$) significantly reduces frequency sweep consistent with theory
- Do unrecognized AC modes occur at very high β ?
 - AC modes historically not observed in STs: suppressed or unrecognized?
 - Theory predicts suppression due to $\nabla\beta$ effects area for future study

At low β , AC mode frequency sweeps from f_{geo} to f_{TAE} , consistent with theory

- $\beta_{tor} \sim 6\%$ at q_{min} at t = 0.27 s • β dominated by fast-ions at q_{min} at t = 0.27 s
- frequency sweeps over expected range for low β:
 - $\sim f_{geo} \sim f_{TAE}$
 - Consistent with theory

abla eta modification of AC frequency sweep is substantial at high eta

• minimum AC frequency (f_{min}) sensitive to n – expected $\nabla \beta$ effect*

•
$$f_{min} > f_{geo}$$

• $f_{min} \rightarrow f_{geo}$ as $n \rightarrow 1$

*G. J. Kramer, Plas. Phys. Contr. Fus. 46, L23 (2004)

NSTX

- Internal structure of AC modes measured with reflectometers
- *q* profile from similar shot shows minimum at $R \sim 1.25$ m.
- Structure consistent with localization at q_{min}
 - Stronger localization for highest n mode, as expected from theory

Polarization of AC δ B at plasma edge is consistent with "shear Alfvén wave" localized near q_{min}

- For shear Alfvén waves: $\delta B \perp B_0$
- AC mode localized around q_{min} (R ~ 125 cm) \Rightarrow expect (B₀ at R ~ 125 cm) $\perp \delta B_{AC}$
- AC polarization measured at plasma edge gives direction of δB_{AC}
- from MSE and edge Mirnov coils: B₀(R=124 cm) $\perp \delta B_{AC}$

AC modes in NSTX cause fast ion loss

- Direct loss of fast-ions from plasma measured at wall with sFLIP*
 - sFLIP is spatially localized doesn't detect all lost fast-ions
- Multi-mode "avalanche" accompanied by spike in loss rate[†]
- Increasing loss rate simultaneous with n = 3 AC mode
 - Loss rate decreases when mode converts to TAE (mode frequency saturates)

*see TP8.00082, D.S. Darrow;

q_{min} evolution determined from AC spectrum at low β

🕦 NSTX

• $q_{min}(t)$ determined from AC mode using low β relation:

$$\omega = \mathbf{k}_{\parallel} \mathbf{v}_{A}$$

- AC f only gives q_{min} sweep not after conversion to TAE
- *n* measured, *m* chosen for consistency
- q_{min}(t) determined by MSE
 - Multiple similar shots averaged
- MSE q_{min}(t) consistent with determination from AC modes

For low β :

$$q_{min} = mV_{Alfvén} \left(nV_{Alfvén} + R(\omega_{mode}^2 - \omega_{min}^2)^{1/2} \right)^{-1}$$

MHD spectroscopy works even at high β – q_{min} determined from AC spectrum

•q_{min}(t) inferred from AC spectrum

• *n* measured, *m* chosen: (*m*,*n*) = (5,2), (4,2)&(2,1), (5,3), (3,2), (4,3), (5,4)

- ω_{min} from observation
- Doppler correction from rotation near q_{min} , R ~ 1.25 m

•Inferred $q_{min}(t)$ consistent with q_{min} from MSE in similar shot

NSTX

NOVA-K* code explores high β **AC physics**

- Linear, ideal MHD, hybrid/kinetic code.
- Computes Alfvén eigenmode (AE) structure, frequency, growth
 - fast ion treated perturbatively
 - "Chu" filtering scheme[†] eliminates acoustic singularities
 - geodesic curvature, β effects included
- Success demonstrated at predicting mode structure and frequency at low β and low ε
 - AC, TAE modes in DIII-D (Van Zeeland'06 APS), JET (Kramer'05 APS), TAE/GAEs in NSTX (Gorelenkov'03 APS)

*C. Z. Cheng et al, Phys. Reports (A Review Sec. of Phys. Letters.), **211**, 1 (1992) †M. S. Chu et al., Phys. Fluids B **4**, 3713 (1992) STX

- Toroidal coupling of poloidal harmonics opens "TAE gap" ⇒ TAEs live in gap
- AC mode lives above continuum at q_{min}

*see XR1.00001, W.W. Heidbrink

NOVA-K AC frequency is consistent with observed mode frequency

 AC frequency sweep modeled by offsets to q profile

experimental q and p profiles used

- NOVA-K and experimental frequency consistent
 - q_{min} assumed linear with time
 - Doppler shift: v_{ϕ} at q_{min} (valid?)
 - statistical error bars: Doppler + mode Δf
 - error neglects strong v $_{\phi}^{\prime}$ ~ 0.5 kHz/cm
- NOVA-K frequency significantly above continuum $\nabla \beta$ effect
- continuum interaction near $q_{min} \sim 2$ \Rightarrow NOVA-K frequency uncertain

AC modes couple to other AEs at high ε and high β

- AC linearly couples strongly to other AEs in TAE gap*
 - High ε widens gap \Rightarrow many modes in gap
 - High ε and high $\beta \Rightarrow$ stronger poloidal coupling than conventional tokamaks
- Strong coupling could lead to enhanced transport
 - multiple fast-ion resonances
 - suppression of ACs desirable
- Strong coupling enhances edge δB
 ⇒ Mirnov coils see AC modes
 - Mirnov coils relatively insensitive to ACs in conventional tokamak

*see also M. A. Van Zeeland et al, Phys. Plasmas 14, 056102 (2007)

NSTX

Measured AC fluctuation levels consistent with NOVA-K calculation

 δn measured by 2 fixed frequency reflectometers (O-mode)

- horns 12 cm above midplane at R = 1.71 m, looking down 5.4°
- "synthetic diagnostic" applied to NOVA-K calculation

reflectometer model: 1-D along line of sight

normalized for best fit

- Fluctuation levels roughly agree
 - relative phase of measurement doesn't fit
 - Modeling is rough- e.g. no refraction, 2-D effects
 - Physics missing in NOVA-K: kinetic effects, rotation, up-down asymmetry

VSTX

Increasing β promotes AC mode coupling of to edge AEs

- β scan performed by rescaling pressure
 - Using experimental *p* and *q* profiles
- Increasing β elevates continuum near q_{min} raises AC frequency into TAE gap
- Elevation into TAE gap \Rightarrow coupling with edge AEs

VSTX

• AC modes identified in low and high β NSTX plasmas

- AC frequency sweep reduction with increasing β suggests ACs may not be recognized at sufficiently high β
- ACs not observed at very high β (i.e. normal NSTX β)
- AC modes can cause fast-ion loss
- MHD spectroscopy works even at high β
- AC modes observed at high β consistent with theory and NOVA-K calculation
 - Changes in AC spectrum with increasing β consistent with theoretical β and $\nabla\beta$ effects
 - Observed structure and frequency consistent with NOVA-K calculation
- Ideal MHD modeling (NOVA-K) of ACs at high β and high ε indicates:
 - $\nabla\beta$ contributes significantly to frequency sweep reduction at high β
 - strong coupling to edge AEs \Rightarrow possible enhanced fast-ion transport

- More detailed structure measurements compare with NOVA-K calculation
 - Use all reflectometers
 - Use interferometry, soft x-rays
- Explore $\nabla\beta$ dependence of AC modes
 - H-mode vs. L-mode
- Explore species contributions to geodesic coupling of ACs (i.e. to specific heat, γ)
- Determine conditions for suppression vs. lack of recognition (i.e. severe sweep reduction)

VSTX

- Assorted Fast-ion and AE presentations...
 - XR1.00001: Instabilities Driven by Energetic Particles in Magnetized Plasmas
 - CO3.00007: Toroidal Alfvén Eigenmode Avalanches on the National Spherical Torus Experiment
 - TP8.00083: Neutral Particle Analyzer Vertically Scanning Measurements of MHDinduced Fast Ion Redistribution or Loss in NSTX
 - TP8.00087: Development of a Fast-Ion D-Alpha diagnostic for NSTX
 - TP8.00085: Excitation of Beta-induced Alfvén-acoustic eigenmodes and q-profile MHD spectroscopy in NSTX
 - TP8.00082: MHD Induced Neutral Beam Ion Loss from NSTX
 - TP8.00073: Beam Modulation Effects on NSTX Ion Power Balance
 - TO4.00003: Reversed shear Alfvén Eigenmodes in the frequency range of the triangularity induced gap on JET
 - NP8.00094: Mode structure and stability analysis of reversed shear Alfvén eigenmodes with NOVA-K
 - JP8.00088: Central Flattening of the Fast-Ion Profile in Reversed-Shear Discharges With Alfvén Eigenmode Activity
- NSTX Research Forum, Nov. 27-29, 2007 (nstx-forum-2008.pppl.gov)

NSTX