Supported by

Office of

Science

High Harmonic Fast Wave Heating Efficiency Enhancement and Current Drive at Longer Wavelength on NSTX

College W&M **Colorado Sch Mines** Columbia U Comp-X FIU **General Atomics** INL Johns Hopkins U Lehigh U LANL LLNL Lodestar MIT Nova Photonics New York U **Old Dominion U ORNL PPPL PSI** Princeton U SNL Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U** Wisconsin

J. Hosea¹

With support from

R. Bell¹, F. Jaeger³, B. LeBlanc¹, J. Parker⁶, C. K. Phillips¹, P. Ryan³, S. Sabbagh⁴, G. Taylor¹, K. Tritz², J. Wilgen³, J. R. Wilson¹, H. Yuh⁵ and the NSTX Team

¹Princeton Plasma Physics Laboratory, Princeton, USA
²Johns Hopkins University, Baltimore, USA
³Oak Ridge National Laboratory, Oak Ridge, USA
⁴Columbia University, New York City, USA
⁵Nova Photons Inc, Princeton, USA
⁶ Cornell University, Ithaca, USA

APS-DPP Meeting Orlando, Florida, November 12-16, 2007

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hvogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAEA loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP**, Garching **IPP AS CR**

HHFW Heating & Current Drive (CD) being Developed for Non-Inductive Startup, I_p Ramp-Up and to Sustain High β

- Explore strong dependence observed for heating on B and k₆
 - Heating efficiency for CD phasing (ϕ = -90° between adjacent antenna strap currents, or k_o ~ 8 m⁻¹) improves markedly at higher B :
 - Due to a reduced surface FW wave damping, not to reduced parametric decay instability (PDI) heating
 - Heating efficiency still falls off for $|k_{\phi}| < 8 \text{ m}^{-1}$ (|antenna phase| < 90°) where surface wave losses dominate reduced core damping
- Surface FW damping for ITER IC CD phasing could be important
- Initial motional Stark effect (MSE) diagnostic study of HHFW CD carried out under conditions of improved heating efficiency

NSTX HHFW Antenna Toroidal Spectrum Well Controlled for Studying Antenna Phase Effects

DNSTX

HHFW antenna extends toroidally 90°

- Phase between adjacent straps easily adjusted between 0° to 180°
- Large B pitch affects wave spectrum in plasma core

HHFW Heating Efficiency Determined via Power Modulation

• RF power deposited in plasma core evaluated by modulating RF power and fitting rise and fall of the stored energy with exponential functions:

$$W(t) = W_0 - (W_0 - W_F)^* (1 - e^{-t/\tau})$$

- $P_{RFdep} = \Delta W_F / \tau$
- Heating efficiency is $P_{RFdep} / \Delta P_{RFpulse}$
- W_{EF} , total stored energy, from magnetic equilibrium reconstruction
- W_e , electron stored energy, from integrating Thomson scattering $P_e(r)$ profile over volumes defined by magnetic equilibrium reconstruction

 $\bigcirc NSTX$

Heating Efficiency at $B_{\phi} = 4.5 \text{ kG Strongly Reduced}$ at Lower k_{ϕ}

• Heating Efficiency $[P_{RFdep}/\Delta P_{RF}]$ (for third pulse on previous slide):

k _∲ (m ⁻¹)	Electrons	Total
14	48%	68%
- 8	22%	44%

- RF power reaching core considerably reduced for smaller k_{φ} (longer wavelength):
 - Shows surface loss is strong function of wavelength
- Edge spectroscopy measures strong edge ion heating via parametric decay, but not strongly dependent on k_{ϕ} :

- For $P_{RF} = 2$ MW, 16% loss at $k_{\phi} = 14 \text{ m}^{-1} \text{ \& } 23\%$ loss at $k_{\phi} = -8 \text{ m}^{-1}$

[Biewer, T. M. et al. Physics of Plasmas 12, 056108 (2005)]

 Other loss mechanisms present; leading candidate, explored here, is surface wave damping on antenna/wall surfaces

Surface FW Propagation Supports Surface Loss at Lower k_{II}

- Propagation is very close to wall at $k_{\parallel} = 8 \text{ m}^{-1}$, on wall at $k_{\parallel} = 3 \text{ m}^{-1}$
- Losses in surface should be higher for lower k_{II}
- Propagation angle relative to B much less than for lower harmonic case
- Increasing B should move onset farther from antenna, increasing heating

Heating Efficiency for $k_{\parallel} = -8 \text{ m}^{-1}$ Increased Substantially as B_{ϕ} Increased from 4.5 kG to 5.5 kG

- ΔW_e for $B_{\phi} = 5.5$ kG is ~ 2 times the value for 4.5 kG over same time interval
- RF power deposition to electrons increases from ~ 22% to ~ 40% at higher B_φ, total efficiency increases from ~ 44% to ~ 65%

HHFW Electron Heating Greatly Improved at $k_{\phi} = -8 \text{ m}^{-1}$, Remains Poor at Lower k_{ϕ}

- 🔘 NSTX

Electron heating for B_{ϕ} = 5.5 kG, I_{P} = 720 kA, P_{RF} = 2 MW

- Clear strong dependence on k_{ϕ} almost no heating at k_{ϕ} = 3 m⁻¹
- Heating at $k_{\phi} = -8 \text{ m}^{-1}$ comparable to $k_{\phi} = 14 \text{ m}^{-1}$ for last two RF pulses but about half that for $k_{\phi} = 14 \text{ m}^{-1}$ for the first RF pulse

Edge Power Loss Increases When Perpendicular Propagation Onset Density is Near Antenna/Wall

- ΔW_e at 8 m⁻¹ about half ΔW_e at 14 m⁻¹ for the first pulse
- ΔW_e at 8 m⁻¹ and 14 m⁻¹ comparable for the last two RF pulses
- Density in plasma edge is high for first pulse and low for last two pulses
- Edge density affects heating when above onset density close to antenna, consistent with surface wave propagation near antenna/wall contributing to RF losses

Improved Heating Efficiency at $k_{\phi} = -8 \text{ m}^{-1}$ Not Due to Reduced Parametric Decay Instability (PDI) Edge Heating

- No significant change in edge ion heating with increased B_{ϕ} at $k_{\phi} = -8 \text{ m}^{-1}$
- PDI edge heating similar at $k_{\phi} = -3 \text{ m}^{-1}$ and -8 m^{-1} , suggests surface wave losses and reduced core damping account for decrease in heating efficiency

Heating Efficiency at $B_{\phi} = 5.5 \text{ kG Decreases}$ for $\phi < -90^{\circ} (k_{\phi} < -8 \text{ m}^{-1})$

• Heating efficiency at strap-to-strap antenna phase, $\phi = -30^{\circ}$ approximately half the efficiency at $\phi = -90^{\circ}$

Profile Dependence on Antenna Phase (ϕ) Suggests RF Modifies Transport

Ray Tracing Predicts $k_{\phi} = -3 \text{ m}^{-1}$ Wave Damping Stronger in Higher T_e Plasma Produced by $k_{\phi} = -8 \text{ m}^{-1}$ Preheating

- Wave passes through core away from inner wall
 - $k_{\phi} = -3 \text{ m}^{-1}$ single pass damping is high ~ 70%
 - With $k_{\phi} = -8 \text{ m}^{-1}$ profiles, -3 m⁻¹ singles pass damping is > 90%

 $k_{\phi} = -3 \text{ m}^{-1}$ Heating is Improved by $k_{\phi} = -8 \text{ m}^{-1}$ Preheating, But $T_{e}(0)$ Not Sustained Due to Surface Damping

- Phase change from -90° to -30° during RF pulse provides $T_e(0) = 2.2 \text{ keV}$ single pass damping target for the $k_{\phi} \sim -3 \text{ m}^{-1}$ wave
- Surface wave loss still dominates and $T_e(0)$ falls to level with only $k_{\phi} \sim -3 \text{ m}^{-1}$

NSTX Results Indicate Surface Wave Damping Could be Important for ITER ICRF Heating

- k_o ~ 4 m⁻¹ at 53 MHz for CD phasing
- Propagation onset density is relatively low: ~ 1.4 x 10¹⁸ m⁻³
- For scrape off density above onset density, surface wave damping should be significant

• Surface wave damping on TFTR could have caused the serious antenna heating observed with $k_{\phi} \Rightarrow \sim 0 \text{ m}^{-1}$ (0° between antenna straps)

MSE Current Drive Studies Have Begun with More Efficient Heating at $k_{\phi} = -8 \text{ m}^{-1}$

- MSE measurements of CD using a 90 kV "diagnostic" neutral beam at P_{NB} = 2 MW
- Measurements provided in 10 ms time intervals
- First time slice used to measure the RF-driven j profiles
- Linear extrapolation in time suggests perturbation to j profile by $P_{\rm NB}$ not large in first 10 ms for cases where $W_{\rm EF}$ increases linearly in time

NSTX

MSE Results Show Clear Change in Core Field Pitch Angle for -90° Antenna Phase ($k_{\phi} = -8 \text{ m}^{-1}$)

• Integral over j_{ϕ} peak for -90° phase indicates ~ 15 kA of RF CD relative to no RF case inside R = 1.2 m, ~ 5 kA relative to - 60° phase

Current Drive at - 90° Antenna Phase ($k_{\phi} = -8 \text{ m}^{-1}$) Predicted to Peak in Core

• j_{ϕ} peaks up for $\rho = (\psi_N)^{1/2} < 0.2$ and AORSA peaks more

- TORIC code predicts ~ 37 kA at 1.2 MW (65% heating efficiency)
- AORSA 2D code predicts ~ 26 kA ~ 2 x measured value vs No RF
- AORSA includes counter CD spectrum as well

3D Codes Using Full Toroidal Spectrum Being Developed to Include Surface Damping, Core Damping and CD Effects

AORSA $|E_{RF}|$ field amplitude for -90° antenna phase case with 101 n_{$\phi}$ </sub>

- Waves propagate around plasma axis in + B₀ direction

 similar to GENRAY rays
- Wave fields very low near inner wall
- SciDAC project extending codes to include edge loss mechanisms
- NSTX is good platform for benchmarking advanced RF codes

Conclusions

 $\bigcirc NSTX$

- RF losses in the plasma edge are function of k_{ϕ} & edge density
 - dramatic increase in core heating efficiency observed at higher B_{ϕ} & lower edge n_e for -90° CD phasing ($k_{\phi} = -8 \text{ m}^{-1}$)
 - losses are consistent with the onset density for FW perpendicular propagation being exceeded too close to antenna/wall
 - ⇒ Effect could be important for ITER since wavenumber is relatively low for some heating/CD scenarios
- Initial MSE measurements suggest I_{RF} is ≤ 1/2 that predicted by TORIC and AORSA
 - trapped electron effects are strong in the low aspect ratio NSTX
 - higher RF power for longer pulse length required to make more definitive measurements
- Ongoing RF SciDAC work is important for studying edge loss processes and to provide accurate CD estimates which include total launch spectrum along with effect of high B pitch at antenna

Other Presentations at this Meeting on HHFW

Monday afternoon:

- CO3.002 E. Mazzucato Turbulence fluctuations
- CO3.003 H. Yuh Internal transport barriers

Tuesday afternoon:

• JP8.023J. B. Parker GENRAY analysis

Thursday morning:

- TP8.070D. R. Smith Electron gyroscale fluctuations
- TP8.074L. F. Delgado-Aparicio Multi-energy SXR array measurements
- TP8.101P. M. Ryan HHFW heating and CD progress

VSTX