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Outline
• Motivation for investigating lithium plasma facing components

• Background for the work in progress
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Motivation

• A decade of international research on liquid lithium indicates that it shows
  promise for providing a self-healing plasma facing surface in a DT reactor.

• NSTX near term research with solid and eventually liquid lithium is aimed
  towards using lithium to control density and impurity influxes in H-mode
  plasmas.

• The 3 Phase NSTX Lithium Plan for Particle Control and Power Handling is
   moving aggressively toward the 3rd Phase:

I. Lithium Pellet Injector (2005-2009)
II. Lithium Evaporator (2006-2009)
III. Liquid Lithium Divertor (2009-2012)

• This phased approach is allowing NSTX operations, diagnostics, and
  research to be adapted to lithium wall conditions.

• Recent work has focused on H-mode plasmas which appear to be
  sensitive to lithium deposition even without pre-conditioning walls.
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Background for the Work in Progress

• NSTX solid lithium coatings pump:

       - D+ and D0 through the formation of lithium deuteride (LiD)

- incident 500-2000 eV D to estimated pumping depth of ~100-250 nm

- average Li deposition exceeds the pumping depth over ~50% of lower
  divertor strike point area

• Pumping capacity of lithium coating can be reduced by:

- Coverage of some areas by less than full active depth

- Localization of interaction to region around divertor strike point

- Passivation of lithium by formation of compounds (e.g. LiOH, Li2C2)

- Diffusion into the substrate
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Lithium Pellet Injection (2005-2007)

• To observe Li pumping, TFTR first used repeated Helium
discharges to condition graphite PFCs (J. Strachan et al.,)

- to remove D fuel gas (degassing)

• In NSTX, after similar Helium conditioning and Li pellet
injection, we observed Li pumping in low density D LSN L-
mode discharges (2005).

• Subsequently, NSTX without degassing graphite,
observed Li pumping in high density D LSN H-mode
discharges (2007).
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After 25 mg LPI into He Plasmas, First D LSN L-mode Shot
Exhibited Factor ~2 Decrease in Density

• Li pumping saturated after the 2-3 similar L-mode D discharges and returned to pre-
Li wall conditions, in agreement with consumption of injected Li.(2005)

• Similar results following LPI into higher density H-modes without degassing
graphite.(2007 after >9g of Li  from 2006).

M. Bell

• First, D degassed from
  graphite with Helium
  discharges, then Li
  deposited by LPI into
  Helium discharges
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Lithium Evaporator (2006-2007)
• The 2005 pellet results motivated
accelerated development of Li evaporation

• In 2006, Li evaporated between discharges and never into
  HeGDC. Run total = ~9 g.

• In 2007, Li evaporated continuously during the operation day.
  Run total =93 g.  This day-long evaporation continued during:
       - 10 min HeGDC between discharges (resulting in 

  codeposition of He and subsequent trapping in solid Li voids)

          - Subsequent 1sec D discharges
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Design of LIThium EvaporatoR (LITER 2007)
 Shown in Operating Orientation

 10 cm

•Typical Operating Conditions
• Capacity: 90 g Li
• Oven Temp: 600-680°C
• Rate: 1mg/min - 80mg/min

• LITER on probe & loaded
  with Li under argon

LITHIUM
SURFACE
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LITER Produces Collimated Lithium vapor
Stream; Rate Varies Strongly with Temperature

• Above 600°C, LITER evaporation
  rate increase may be due to non
  molecular flow (PM5.00002. L. Zakharov)
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 LITER 2006 Upgraded for 2007

LITER  (LIThium EvaporatoR)
QDM (Quartz Deposition Monitor) 

• LITER 2006
- aimed toward lower Center Stack
- cool-down time ~20 min
- short cool-down time allowed separate
  HeGDC and evaporation operations
- tube heaters brazed to oven run close to
  limits and suffered some failures

• LITER 2007
- reaimed toward lower divertor for increased
  divertor target deposition (x3)
- larger output aperture area (x1.7)
- larger capacity (x1.4)
- more robust heaters for higher evaporation
  rates (80 mg/min vs 10 mg/min)
- more mass slowed cool-down time ~1.5 hrs
- to maintain NSTX duty cycle, long cooldown
  time required evaporation into HeGDC
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Areas of Lithium Deposition Visible After the Run
Through Conversion to Stable Lithium Compounds

• PFCs Whitened after Venting Due to Li2CO3 Formation   ( Li→LiOH →Li2CO3)

LITER
Port

Center Stack
Li Shadow

Lower Outer
Strike Point

LITER
Port

• Increased Li
deposition
around LITER
due in part to:

-Li+ redirected
by HeGDC
electric field

-Li scattering
by He gas

• Slow helium outgassing was observed following HeGDC and affected
subsequent D discharges (time scale of 10s of min).
• The pumping of helium codeposited with solid Li has been observed
   previously and is attributed to He trapping in Li interstitial voids (Mirnov,
   Evtikin, T-11; Hirooka, PSI 04).

40cm

Photos of Vessel Interior After 2007 Campaign (93 g of Li Deposited)
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Simulation of Evaporated Lithium Distribution
Reproduces Observed Features

C. H. Skinner
PM5.00004,

LITER
2007

QUARTZ
DEPOSITION

MONITOR

COUPONS

L. Zakharov
PM5.00002

• Lower QDM exhibits
  series of upward
  steps in response to
  increasingly high Li
  evaporation rates
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Stored Energy (WMHD) Increases After Li Deposition Mostly
Through Increase in Electron Stored Energy (We)

M. Bell

• Benefits From Lithium Were Frequent but Not Always Seen

• Includes all controlled discharges used to study initial  LITER operation
• “Without Lithium” - similar discharges with no Li (i.e., prior to LITER operation)
• Data sampled at time of peak We

W
e (

kJ
)

Fit s
lop

e =
 0.

66



14

Te Profile Broadens After Lithium but Central Te
and Profiles of Density and Ions Unaffected

• No effect on ions after Li  • Te(0) no change, <Te> increases after Li 

• Slight broadening of ne profile after Li   

• Ti from CHERS

• Shots after Li reached peak
  We ~50 ms later on average
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TRANSP Analysis Infers Edge χe, and Core χi,
Decreasing Following Lithium Deposition

M. Bell
S. Kaye
B. Le Blanc
R. Bell

• Edge χe

  decreasing
 following Li

• Core χi

   decreasing
  following Li
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Lithium Deposition Reduced ELM Frequency and Yielded
Quiescent Periods in Some Discharges

• After lithium, WMHD increased.

• After lithium, frequency of large ELMs
  greatly reduced. Note: quiescent time.

AFTER Li

BEFORE Li

AFTER Li

AFTER Li

BEFORE Li

BEFORE Li

R. Maingi, ORNL
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Significant D Pumping at Higher Li
Evaporation Rates

• L-mode density
  reduced by 50%
  following high Li
  evaporation rate

t=0.098 sec

Radius [m]

L-mode

• Black: reference discharge before LI

• Blue: reference + 35mg/min LITER
(Commonly used rate = 15-20 mg/min)

R. Maingi, ORNL

J. Menard
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EBE Transmission Efficiency Increased With
Lithium Evaporation Rate

    0 mg/min (124284)
    11 mg/min, total = 171 mg (124290)
    19 mg/min, total = 286 mg (124309)

Measured Trad increased from
200 eV to ~ 400 eV

Transmission efficiency increased
with Li conditioning:
From 20%      60% for fce=18 GHz
From 20%      50% for 2fce=28 GHz

2fce=28 GHz

Ip=0.8 MA, Te(0)~0.7 keV

CO3.00011 S. Diem
• Lithium provided a tool for
altering edge conditions

Edge lithium conditions may
be reducing edge collisionality

Lithium edge increases Te and reduces Ln near B-X-O mode conversion layer
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Example of Edge Neutral Density Decreasing
During Lithium Deposition

• Lithium is pumping strongly by the final shot of Day 1 but pumping
  effect completely disappeared by the reference shot of Day 2.

• Pumping effect of Li decreases with time  - may be an indicator of Li
  reactions with graphite substrate and/or residual vacuum gases

• Day 2 = Day 1+ 64hrs

TP8.00073
P.W. Ross
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Lower Divertor Dα, C II, and O II Luminosity Decreased
with Increasing Li Deposition

• Comparison of shots @ 200 ms with ne within +14% during Li deposition sequence
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See also TP8.00066
J. A. Robinson
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Edge Dα Luminosity Decreases Following
Lithium Deposition
Plasma TV Dα Intensity Contours (same scale at 0.6s)

H-mode Before Li H-mode 1st Shot
After 4.8g  Li

C.Bush, ORNL

121507 121521121510

• Dα luminosity
  reduced x3 during
  1st Shot following Li,
  and remained lower
  in following Shots

• Possible recycling
  reduction

Before Li

1st Shot After Li
Sec

5th Shot

Filtered Plasma TV Integrated Signal
From Dα Intensity
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Plasma TV view
(w/o filtering)
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Average Coverage of Li & D on 21 Graphite Tiles Measured at 2
Toroidal Locations After the 2006 Experimental Campaign

• SNL Ion Beam Analysis of 21
  tiles in or near poloidal plane:

• Lower tiles (L) exhibit more
Li than upper tiles (U).

• Tiles shadowed by the
Center Stack have ~ 10x
less Li than unshadowed
tiles receiving direct Li
deposition.

• D coverage is similar in
unshadowed and shadowed
regions.

PM5.00001
W.R. Wampler

• Li was within 5 µm of the
surface everywhere. On tiles
with low Li coverage the Li was
within 2µm.                       
-Li  in mixed concentration
with unresolved components.

1    2    3    4   5    6   7    8    9   10  11  12  13  14 15  16  17  18  19  20  21
L    L    L    L   L     L  L    L    U    L    L   L    L   L  L   L   L   U   U   U    L

POLOIDAL
MEASUREMENT

PLANE

10

1

14

5

TILE (LOWER DIVERTOR [L], UPPER DIVERTOR [H])

OUTER STRIKE
POINTS INNER STRIKE

POINT REGION

PM5.00002
L. Zakharov
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Future Plans: Liquid Lithium Divertor for Particle Control
- Unique Capability for Diverted H-mode

• Improve LLD in 2010
• Optimize Divertor in 2012

- High power flux
- Longer pulse
- Core fueling

LITER (1) LITER (2)

• 2008: Install 2nd LITER
     -Both with Li shutters • Start LLD operation in 2009

PM5.00002
L. Zakharov

Results suggest Li thickness may be
marginal
• Fill in the shadowed region
• Increase active thickness in remote areas
• LITER Shuttered during HeGDC & shots
• Test Li powder injection into D shots
    (TP8.0063, D.Mansfield)
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Summary and Conclusions

• Effect on plasma pumping and performance of injected Li pellets and Li evaporated
coatings applied immediately prior to reference shot sometimes improved results.

• Improvements observed sometimes include
• decreases plasma density, inductive flux consumption, ELM frequency
• increases in electron temperature, ion temperature, and quiescent time

• Work in progress:
• the continued ne rise, (small initial decrease in ne, stronger increase on Te)
• the nature and duration of the lithium coatings,
• reduction in ELM frequency and periods of quiescence
• helium retention following HeGDC and perhaps eliminating HeGDC
• diagnostic window depositions
• operational issues with improved confinement, e.g., increasing impurity
   content and core impurity radiation with discharge duration.(TP8.0065, S.Paul)
• preparations for 2 LITER units and Li powder injection. (TP8.0063, D.Mansfield)
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