

Divertor heat flux reduction and detachment in the National Spherical Torus eXperiment

College W&M Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** SNL Think Tank, Inc. UC Davis UC Irvine **UCLA** UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

V. A. Soukhanovskii

Lawrence Livermore National Laboratory, Livermore, CA

Acknowledgments: R. Maingi¹, D. A. Gates², J. E. Menard², R. Raman³, M. G. Bell², R. E. Bell², C. E. Bush¹, R. Kaita², H. W. Kugel², B. P. LeBlanc², S. F. Paul², A. L. Roquemore², and the NSTX Team

> ¹Oak Ridge National Laboratory, Oak Ridge, TN ²Princeton Plasma Physics Laboratory, Princeton, NJ ³University of Washington, Seattle, WA

APS-DPP Meeting

Nov. 11-15, 2007 Orlando, FL

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U U Tokvo JAERI loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep U Quebec

This work was performed under the auspices of the U.S. Department of Energy under Contracts W-7405-Eng-48, DE-AC52-07NA27344, DE-AC05-00OR22725, DE-AC02-76CH03073, and W-7405-ENG-36.

Divertor heat flux mitigation is key for present and future fusion plasma devices

- Radiative divertor is envisioned for present and future devices (e.g. ITER) as the steady-state heat flux mitigation solution
 - Divertor $q_{peak} < 10 \text{ MW/m}^2$
 - Large radiated power fractions $(f_{rad} = 0.50 0.80)$
 - Integration with pedestal and core

Peng et al, PPCF 47, B263 (2005)

- Radiative divertor in NSTX
 - Does radiative divertor work in a spherical torus (ST) with a compact high q_{II} divertor? What are the limitations?
 - Experimental basis for radiative divertor optimization and projections to ST-CTF

Talk Outline

- Introduction radiative divertors might be challenging for STs
- Radiative divertor experiments in NSTX
 - Low κ, δ H-mode plasmas
 - High κ , δ H-modes (high flux expansion divertor)
 - Partially detached divertor (PDD) in high κ, δ H-mode plasmas
- Six-zone model predictions
- Conclusions and future work

Radiative divertor concept developed in divertor tokamaks in the 1990s

Divertor geometry in NSTX is different from high aspect ratio tokamak divertors

	NSTX high κ,δ	Tokamak	125279 0.660 s ψ_n =1.002 EFIT02
Aspect ratio	1.3	2.7	
In-out SOL area ratio	1:3	~ 2:3	
Parallel connection length L_{\parallel} , midplane to target (m)	8-12	30-80	
$L_{\parallel,}$ X-point to target (m)	5-8	10-20	
Angle at target (deg)	5-15	1-2	

Open geometry NSTX divertor enables flexibility in plasma shaping

- Plasma facing components
 - ATJ and CFC tiles
 - Carbon erosion, sputtering
 - Max P_{rad} fraction limited by carbon radiation efficiency
 - Typical divertor tile temperature in 1 s pulses T < 500 C $(q_{peak} \le 10 \text{ MW/m}^2)$
- No active divertor pumping
 - Experiments with lithium coatings for reduced recycling

NSTX diagnostics set enables divertor characterization

- Diagnostic set for divertor studies:
 - IR cameras
 - Bolometers
 - Neutral pressure gauges
 - Tile Langmuir probes
 - 1D CCD arrays for $D\alpha$, $D\gamma$
 - UV-VIS spectrometer (3 divertor chords)
- Midplane Thomson scattering and CHERS systems
- Divertor gas injector Γ_{gas} = 60-160 Torr I / s

q_{peak} reduction by PDD at low κ , δ achieved albeit with confinement degradation

- Peak heat flux in outer divertor (Maingi JNM 363-365, 196 (2007)):
 - ITER-level q_{out}< 10 MW/m²
 - Scaling of q_{peak} : linear with P_{sol} (P_{NBl}), linear-monotonic with I_p
 - Large q_{peak} asymmetry 2-10; inner divertor always detached
- Experiments using D₂ injection (Soukhanovskii IAEA 2006):
 - q_{peak} reduced by up to 60 % in transient PDD regime
 - X-point MARFE degraded confinement within 2-3 x τ_E

High plasma performance and reduced q_{pk} are attained in highly shaped plasmas

- High performance H-mode (Gates APS 2005, Maingi APS 2005, Menard IAEA 2006)
 - κ = 2.2-2.3, δ = 0.65-0.75, *drsep* ~ 5-10 mm
 - H89P ~ 2.0
 - β_t = 15 25 %
 - f_{bs} = 45 50 %
 - longer pulses ~50 x τ_E
 - smaller ELMs
- Divertor in highly shaped plasmas
 - Flux expansion, area expansion $(q_{peak} \downarrow)$
 - Higher isothermal SOL volume $(P_{rad} \uparrow)$
 - Lower L_p (neutral penetration \uparrow)
 - Neutrals recycle toward separatrix

Reduced q_{peak} is a natural benefit of highly shaped configuration

- q_{peak} scales linearly with P_{SOL} with lower slope than at low κ, δ
- Flux expansion 16-24, area expansion 5-8
- While q_{peak} is reduced, total Q_{div} is not

High core and pedestal plasma performance during PDD is achieved in high κ , δ configuation

- Detachment experiments
 - *I_p* = 0.8 1.0 MA
 - *P_{NBI}* = 4 -6 MW
 - $n_e = 0.85 \times n_G$
 - D₂ injection in divertor
- High core plasma performance during PDD phase
 - No effect on W_{MHD} or pedestal
 - Core P_{rad} and n_c decreased
 - Small ELMs (∆W_{MHD}/W_{MHD}≤ 1%) and mixed ELMs

Peak heat flux reduced by 60 % in PDD phase

- λ_a changed from 5-10 cm to 10-15 cm
- PDD zone 10-15 cm
- Bolometer signal (P_{rad}) increased by 30-60 % in PDD phase

Neutral pressure, radiated power, and recombination rate increase in PDD phase

- Onset of PDD phase within 50-100 ms from start of gas:
 - P_{rad} increased 50 %
 - Divertor neutral pressure increased x 3, midplane pressure did not increase
 - Increase in recombination rate, D I Balmer spectra (8...11 2) indicate
 - $T_e < 0.7-1.2 \text{ eV}$ (from line intensity ratio according to Saha-Boltzman formula)
 - $n_e \sim 2-6 \times 10^{20} \text{ m}^{-3}$ (from Stark broadening and MMM calculations)
- More measurements needed to characterize power and momentum loss in outer leg

Good core plasma performance and significant q_{peak} reduction obtained in PDD regime

- q_{peak} reduced by 60 80 % in PDD phase
- q_{peak} in PDD appears to scale with P_{SOL} radiative heating?
- Observed PDD properties similar to tokamaks (e.g. DIII-D *)

* Petrie et al., NF 37, 321 (1997)

Six-zone 1D analytic SOL / divertor model captures essential features of detachment

Model predictions consistent with experiment within NSTX range of SOL parameters

- NSTX SOL / divertor parameters
 - $Q_{\perp} = 0.5 20 \text{ MW m}^{-3}$ (high)
 - S₁ = 0.01-3 x10²³ s⁻¹ m⁻³
 - $L_x = 5-10 \text{ m} (\text{low})$
 - $R_{rec} = 10^{23} \text{ s}^{-1} \text{ m}^{-3}$
- Example calculation
 - $Q_{\perp} = 10 \text{ MW m}^{-3}$
 - $S_{\perp} = 6 \times 10^{22} \text{ s}^{-1} \text{ m}^{-3}$
 - $f_{rad} = 0.3$ (attached)
 - $f_{rad} = 0.9$ (detached)
- Recombination onset at T_e < 1.5 eV
- Detachment at T_e < 1.0 eV

All routes to detachment predicted by model involve high f_{rad}

- Detachment at NSTX-range of Q_1 , S_1 can be achieved in model by
 - increasing f_{rad} (shown)
 - increasing Γ_{i-div} (gas puff)
 - increasing S, (not shown)

High *f*_{*rad*} can be marginally achieved with carbon in NSTX divertor

- Hulse-Post non-coronal radiative cooling curves for low Z impurities for n_0/n_e , n_e - τ_{recy}
- Calculate max q_{||} that can be radiated
- Express max q_{||} as function of distance from heat source for range of f_z (Post JNM 220-222, 1014 (1995))
- Power losses due to deuterium
 P_{rad} and ionization not considered
- Carbon works marginally in NSTX ($q_{\parallel} \sim 25 60 \text{ MW/m}^2$)

Volumetric power and momentum losses are limited by L_x (R) at high magnetic field shear

- Fraction of q_{\parallel} to be radiated is a function of L_x for given impurity
 - high f_{rad} only where L_x longest
- Electron-ion recombination rate depends on divertor ion residence time
 - Ion recombination time: τ_{ion}~ 1-10 ms at T_e =1.3 eV

Conclusions and future work

- Significant divertor peak heat flux reduction has been demonstrated in highly shaped high-performance H-mode plasmas in NSTX using divertor magnetic flux expansion and radiative divertor simultaneously with high core plasma performance
 - Good synergy of high performance small ELM H-mode regime with PDD
- Starting to learn detachment characteristics and limitations
 - Detachment achieved only with additional gas injection
 - PDD regime onset is abrupt. High radiated power, neutral pressure, volume recombination rate are measured
 - PDD properties appear to be similar to those observed in tokamaks
- Future work:
 - q_{peak} reduction in PDD regime in double null configuration
 - Liquid lithium divertor planning for installation in 2008

Related NSTX talks and posters

Session CO3: NSTX and General Spherical Tokamak, Monday, November 12, 2007 2:00PM

- **CO3.00008**: R. Maingi, T. Biewer, H. Meyer, R. Bell, B. LeBlanc, C.S. Chang, Dependence of the L-H power threshold on magnetic balance and heating method in NSTX
- CO3.00014: L.E. Zakharov, R. Majeski, Lithium Loaded Target Plate for driving NSTX toward high performance

Session TP8: Poster Session VII: NSTX Spherical Torus, 9:30 AM, Thursday, November 15, 2007

- **TP8.068** D.P. Stotler, R. Maingi, A.Yu. Pigarov, M.E. Rensink, T.D. Rognlien, UEDGE Simulations of the NSTX Liquid Lithium Divertor Module
- TP8.090 J.-W. Ahn, J. Boedo, R. Maingi, V. Soukhanovskii, H. Kugel, L. Roquemore, SOL width scale lengths in NSTX
- **TP8.092** R.J. Maqueda, R. Maingi, C.E. Bush, K. Tritz, J.-W. Ahn, J.A. Boedo, S. Kubota, E. Fredrickson, S.J. Zweben, Structure and evolution of ELMs in the edge and SOL of NSTX
- **TP8.094** D.A. Russell, J.R. Myra, D.A. D'Ippolito, R. Maqueda, V.Soukhanovskii, S.J. Zweben, Reduced simulations of boundary turbulence in NSTX
- **TP8.095** T. Stoltzfus-Dueck, J.A. Krommes, S.J. Zweben, Modeling of Blob Formation in NSTX Edge Turbulence
- TP8.096 V.A. Soukhanovskii, R.E. Bell, R. Kaita, A.L. Roquemore, R. Maqueda, Spectroscopic T_e and n_e measurements in a recombining divertor region and in MARFEs in NSTX using D I and He II high-n series line emission.
- **TP8.100** D.P. Lundberg, V.A. Soukhanovskii, M.G. Bell, R.E. Bell, R. Kaita, H.W. Kugel, B.P. LeBlanc, J.E. Menard, A.L. Roquemore, D.P. Stotler, R. Maingi, R. Raman, Supersonic gas jet fueling efficiency studies

NSTX Research Forum, Nov. 27-29, 2007, http://nstx-forum-2008.pppl.gov

Backup

Divertor detachment is linked to operating space parameters

