

A quantitative account of electron energy transport in an NSTX plasma

College W&M **Colorado Sch Mines** Columbia U Comp-X FIU General Atomics INL Johns Hopkins U Lehigh U LANL LLNL Lodestar MIT Nova Photonics New York U **Old Dominion U ORNL** PPPL PSI **Princeton U** SNL Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

King-Lap Wong In collaboration with S.M. Kaye, D.R. Mikkelsen, J.A. Krommes, K. Hill, R. Bell, B. LeBlanc

PPPL, Princeton University, Princeton, NJ

49th APS-DPP Conference November 12-16, 2007, Orlando, Florida

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP.** Garching **IPP AS CR**

Introduction

- Anomalous electron transport is an old subject, almost as old as magnetic fusion research itself.
- ITG turbulence apparently explains much of ion transport, electron transport is our new frontier.
- While ETG turbulence is a natural candidate for electron transport in tokamaks, here for NSTX, we estimate stochastic magnetic field transport produced by microtearing instabilities ^{1,2}
 - 1. M.H. Redi et al., EPS (2003)
 - 2. D.J. Applegate et al., Plasma Phys. (2004)

Outline

- Properties of microtearing modes
- Growth rate spectra and threshold for an H-mode plasma
- Ubiquitous modes; island chains at many rational-q surfaces
- Nonlinear saturation amplitude of B_r sets island width
- Island chain overlap creates 'global' stochastic magnetic field
- Parallel electron motion leads to large effective χ_e
- Comparison between theoretical & experimental χ_e
- Reversed magnetic shear largely stabilizes the modes
- Mitigation of microtearing modes with low collisionality

Why is microtearing important for NSTX?

- "the trapped electron term is too feeble" to overcome stabilizing effects in the core of a conventional tokamak [Connor, PPCF, 1990]
- Microtearing generally important only near the edge of DIII [Ohyabu, PRL(1987)] and Alcator C-Mod [Kesner, Nucl. Fusion 1999].
- Stable in plasma core where T_e is high enough such that $v_{ei} < \omega_{*e}$ but NSTX has low T_e, and high n_e, so v_{ei} is high
- Can be the most unstable mode in NSTX [Redi, EPS-03]
- High saturation amplitude due to low magnetic field
- Consistent with strong B scaling in NSTX, $\tau_E \sim B^{0.9}$ [Kaye, PRL, 2007] which is due mostly to changes in χ_e alone.

Properties of microtearing modes

- High-m (m~10-20) tearing modes (k_{||}=0)
- Driven by only ∇T_e

 Δ ' is actually negative at high m (stabilizing)

Different from ITG modes :

	<u>δE</u> _r	$\underline{\delta B}_{\underline{r}}$	<u> mode structure</u>	$\underline{k}_{\underline{\theta}}$ direction			
Microtearing	odd	even	extended	electron drift			
ITG	even	odd	ballooning	ion drift			
δB_r has even parity - creates magnetic islands at q=m/n							

• In slab geometry, instability requires: [Wesson, "Tokamaks", 1997] (a) η_e =dlnT_e/dlnn_e>0.3

(b) collision rate must exceed electron diamagnetic freq., $v_{ei} > \omega_{*e}$

Distinguishing between microtearing and resistive ballooning modes

• Frequency

microtearing: $\omega = \omega_{*e} + c \omega_{*T}$, 0 < c < 1resistive ballooning: $\omega << \omega_{*e}$

• Mode structure microtearing: $k_{\parallel} = 0 \Rightarrow$ mode structure extended along **B** resistive ballooning: $k_{\parallel} \neq 0$,

mode amplitude peaks on low field side, because the bad curvature plays an important role

K-L Wong, APS-07, NI1.00004, p 7

No low frequency MHD at time of interest

K-L Wong, APS-07, NI1.00004, p 8

The GS2 gyrokinetic stability code

- flux tube geometry; ballooning coordinates
- the initial-value algorithm finds the
- growth rate and parallel mode structure of the most unstable eigenmode with a given k_{θ}
- get experimental profile input from TRANSP

Ref: M. Kotschenreuther et al., Comp. Phys. Comm. 88, 128 (1995) W. Dorland et al., Phys. Rev. Lett. 85, 5579 (2000)

Microtearing modes are broadly unstable

K-L Wong, APS-07, NI1.00004, p 10

Experimental ∇T_e is well above threshold

Compare GS2 with analytic theory

Choose r /a = 0.5 where: n_e =6.5E+13 cm⁻³, T_e =650 ev, L_{Te} =42 cm, L_{ne} =78 cm, B=5 kG, T_i =800 ev, and

(1) $k_{\parallel} = 1/(4\pi Rqn_{period}) \sim 2.3 \times 10^{-4} \text{ cm}^{-1} \sim 0$ [Nyquist k] require $n_{period} \sim 9$ for GS2 convergence. (2) $k_{\theta}=0.9 \text{ cm}^{-1}$, $\omega_{*e}=1.7 \times 10^5 \text{ rad/s}$, $\omega_{*T}=3.1 \times 10^5 \text{ rad/s}$, GS2: $\omega=2.8 \times 10^5 \text{ rad/s}$, so $\omega = \omega_{*e} + 0.35 \omega_{*T}$ (3) instability threshold is $\eta_e \sim 0.5 > 0.3$, the slab threshold (4) $v_{ei} > \omega_{*e}$ is satisfied where GS2 finds that microtearing modes are unstable.

Nonlinear saturation sets island width

The only available nonlinear theory [Drake, PRL, 1980] finds that unstable short wavelength modes are nonlinearly coupled to long wavelength modes which are stable. Saturation of the modes occurs when Growth and damping rates balance with $\delta B/B \approx \rho_e/L_T$, and low magnetic field implies large ρ_e and high $\delta B/B$. Typically, $\rho_e \sim 0.01$ cm, $L_T \sim 30$ cm , and $\delta B/B \sim 3x10^{-4}$

Ref: J. F. Drake et al., Phys. Rev. Lett. 44, 994 (1980)

Caveats: 1. Assumes negligible magnetic shear

2. Theory developed for conventional tokamak, not ST's

3. Has not been checked with gyrokinetic simulations

Development of a stochastic magnetic field

• Magnetic islands in toroidal plasmas (Kerst-1962)

Field line eq. : $d\mathbf{x}/d\tau = \mathbf{B}(\mathbf{x}) \Rightarrow$ Hamilton's eq.

In flux coordinates: (ψ_t, θ, ϕ) - canonical coordinates of the field lines, the eq become the Hamilton's eq, with ψ_p as the Hamiltonian

- Magnetic braiding Stix (1973)
- Magnetic flutter Callen (1977)
- Studies of chaotic fields use a standard map:

$$\begin{split} \theta_{n} &= \theta_{n-1} + \Psi_{n-1}, \\ \Psi_{n} &= \Psi_{n-1} + \mathsf{K} \sin \theta_{n-1} \end{split}$$

• Vary K to find transition from local to global stochasticity

Narrow stochastic regions surround small island chains

Stochastic field lines are very localized near the separatrices (K=0.4) Ψ

Island chain overlap with large islands produces global stochasticity

A single stochastic field line wanders through each of the red and green regions

Threshold for 'global' stochasticity

- When adjacent island chains are separated by good surfaces, stochastic zones are very localized.
- When many adjacent island chains overlap, a 'global' network of stochastic magnetic field is created.
- Resistive boundary layer of 2ρ_s sets a minimum width [Porcelli (PRL-1991)].
- Overlap of either the adjacent resistive layers or the island chains is sufficient [D'Ippolito et al., Phys.Fluids(1980)]

Resistive layers are overlapping

Resistive layers ($d\sim 2\rho_s$) overlap when

 $m > m_c = q(2q'\rho_s)^{-1/2}$, or $k_{\theta} > k_c$ ($k_c = m_c/r$) D.A. D'Ippolito et al., Phys. Fluids 23, 771 (1980)

For shot 116313A11 at 0.9 s :

 $\rho_{s} = (2T_{e}/m_{i})^{1/2}/\omega_{ci}$, B=5kG, a=65cm, ρ =r/a

ρ	q	Τ _i	T _e	$ ho_{s}$ q'=	=dq/dr	m _c	k _c =m _c /r
0.4	2.3	900ev	780ev	1.1cm	0.06cm ⁻¹	6.3	0.24cm ⁻¹
0.5	2.8	800	680	1.1	0.068	7.2	0.22
0.6	3.2	630	560	1.0	0.13	6.3	0.16
0.7	4.5	470	440	0.8	0.29	6.5	0.14

Resistive layers overlap for $k\rho_s > 0.1-0.2$ STX K-L Wong, APS-07, NI1.00004, p 18

Island chains are overlapping

- Is stochasticity parameter S = $w/\delta r > 1$?
- Separation between adjacent island chains: $\delta r = 1/(n^2q')$
- Island width = w = 4 [$b_{mn} R q^2/(mq')$]^{1/2} J. Krommes
- $b = \delta B/B = \rho_e/L_T$, ($b \sim 3x10^{-4}$)

•
$$b^2 = \sum b^2_{mn} = \Delta n \ \delta m \ b^2_{mn}$$

- Spectral width: $\Delta n = \Delta m/q >> 1$, ($\Delta m \sim 20$)
- $\delta m = \Delta k_{\parallel}/(Rq) \ge 1$ measures spread in k_{\parallel}
- S = 4m [$(m/\Delta m)^{1/2}(m/\delta mq)^{1/2}$ R q'/q b]^{1/2}, (q~2.8)
- For #116313, get: $w \ge \rho_s$, and $S \ge 1$

Stochastic magnetic field produces a large electron thermal conductivity

- When islands overlap, magnetic field lines become stochastic, over a characteristic length, D_M
- Parallel electron motion produces a 'radial' thermal conductivity (for the collisional regime, $\lambda_{mfp} << L_c$):

 $\chi_e = D_M v_e (\lambda_{mfp} / L_c)$ where $D_M \approx R |\delta B|^2 / B^2$

Ref: A.B. Rechester & Rosenbluth, Phys. Rev. Lett. <u>40</u>, 38 (1978)
T.H. Stix, Nucl. Fusion <u>18</u>, 353 (1978)
B.B. Kadomtsev & O.P. Pogutse (IAEA,Innsbruck-1978)

Field line correlation length sets heat flux

- A rigorous theory¹ of plasma transport in stochastic magnetic fields is extremely complex; a precise formula for the field line correlation length L_c is unknown.
- R & R worked with a cylinder with $\langle B_{\theta} \rangle = 0$, and use L_c = Kolmogorov length ($\rightarrow \mu^{3/4}/\nu^{1/4}$ in fluid mechanics)

= e-folding length of flux tube circumference

We use L_c= qR = field line connection length^{2,3} instead.
 For NSTX plasmas, the electrons are collisional:

 $1 < L_c / \lambda_{mfp} < 10$

- 1. J.A. Krommes et al., J. Plasma Phys. <u>30</u>, 11 (1983)
- 2. B.B. Kadomtsev et al., IAEA (1978)
- 3. J.A. Krommes, private communication

χ_e due to saturated microtearing modes

Put $\delta B/B = \rho_e/L_T$, get $\chi_e = (\rho_e/L_T)^2 Rv_e(\lambda_{mfp}/L_c) = (\rho_e/L_T)^2 v_e^2/(v_{ei}q)$										
Use parameters from #116313A11 at 0.9s, L _c = qR										
ρ	Z_{eff}	T_{e}	n _e	$ ho_{e}(cm)$	v _e L	_T (cm)	v _{ei} (s⁻¹)	q y	ke ^{exp}	<mark>χe^{theo}(</mark> m²/s)
0.35	2.31	820eV	7.2e13	1.36e-2	1.2e9	133	8.1e5	2.0	2.0e5	0.93
0.40	2.16	780	6.8	1.33	1.17	80	7.8	2.3	1.37	2.1
0.45	2.03	735	6.5	1.29	1.14	57	7.6	2.6	1.06	3.4
0.50	1.92	680	6.2	1.24	1.09	42	7.7	2.8	0.88	3.8
0.55	1.82	620	5.8	1.19	1.04	33	7.9	3.0	0.80	5.9
0.60	1.75	560	5.65	1.13	0.99	28	8.6	3.4	0.77	5.5
0.65	1.74	500	5.4	1.06	0.94	25	9.7	3.9	0.80	4.2
0.70	1.77	430	5.1	0.99	0.87	22	11.7	4.6	0.81	2.8
0.75	1.84	380	4.8	0.93	0.82	15	13.8	5.6	0.74	3.3

Comparison between χ_e^{theory} and χ_e^{exp}

Put $\delta B/B = \rho_e/L_T$, get $\chi_e = (\rho_e/L_T)^2 Rv_e(\lambda_{mfp}/L_c) = (\rho_e/L_T)^2 v_e^2/(v_{ei}q)$ Use parameters from #116313A11 at 0.9s, $L_c = qR$

K-L Wong, APS-07, NI1.00004, p 23

Higher $T_{e}(0)$ seen when microtearing modes are stabilized by reversed magnetic shear

K-L Wong, APS-07, NI1.00004, p 24

Microtearing modes are stable at low v_{ei}

Reduce transport by lowering n_e and raising T_e

K-L Wong, APS-07, NI1.00004, p 25

Means of improving electron confinement

NSTX has the flexibility to operate in many regimes, several of which alleviate the effect of microtearing modes:

1. Reversed magnetic shear

- High m modes stabilized and $\rm T_e(0)$ becomes significantly higher with same NBI power

- 2. Raise B_T to reduce saturation level
 - $\tau_{\rm E} \sim {\sf B}_{\rm T}^{0.9}$
 - HHFW heating efficiency also improves, enabling
- 3. Higher T_e so that $v_e < \omega_{*e}$
 - can get $T_e(0) \sim 4$ keV by HHFW heating

Summary

- Quantitative analysis carried out no adjustable parameter
 - theoretical χ_e is in reasonable agreement with experiment.
- This is not surprising because of the low toroidal magnetic field, which leads to high mode amplitude, causing global stochastic magnetic field, and Rechester & Rosenbluth's theory applies.
- Microtearing modes are more stable in reversed shear plasmas
 - and T_e in the core is substantially higher.
- The microtearing instability is not an intrinsic problem in STs
 - should become stable at higher T_e (lower collisionality).
- This result does not rule out ETG or other anomalous loss mechanism.
- More detailed calculations with GEM, a global electromagnetic gyrokinetic simulation code, will begin soon; will include magnetic flutter.

NSTX sessions

Oral session CO3 Monday morning

Poster session TP8 Thursday afternoon

NSTX Research Forum November 27-29, 2007 http://nstx-forum-2008.pppl.gov/index.html

