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NSTX Investigating Use of Lithium as a Plasma Facing Material

• For density control,

• Reducing impurity influxes,

• Heat flux handling,

• Improved plasma performance.

• NSTX lithium program proceeding in stages:

– Li pellets (FY 2005 - 2009)

– Li evaporator (FY 2006 - 2009)

– Liquid lithium divertor (FY 2009 - 2012)

– In parallel, LTX will examine efficacy of Li as the primary PFC.



Developing a Liquid Lithium Divertor (LLD)
to Provide More Pumping & Better Density Control

• Evaporated Li in NSTX has yielded positive results,

– L-mode density reduced 50% & H-mode density reduced 15%,

– Along with improved τE and ELM control.

• But, density still increases monotonically during shot.

• ⇒ Taking next step towards more aggressive use of Li as a PFC.

• Tokamak programs have relied on modeling in designing cryopumps,

– Likewise, using modeling to aid in determination of LLD parameters.

– Distinction is that Li pumps plasma & atoms
⇒ describing plasma + neutral gas modeling here.

– Programmatic & practical considerations also enter.



The Liquid Lithium Divertor Is a Joint 
Collaboration Between Sandia, UCSD, and NSTX
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NSTX, Sandia, and UCSD Will
Work Together to Design the LLD

• NSTX and SNL will work together to:

– Arrive at a detailed design for the LLD,

∗ The work described in this poster is part of this.

– Decide on responsibilities and operational plans,

– Install and test the LLD,

– Carry out LLD experiments.

• UCSD will provide systems for filling the LLD with Li.
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Goal of LLD is to Provide Density Control in 
Both Low & High Triangularity Shapes

● For low triangularity, goal is 50% reduction in ne.
● For high triangularity, 25%.
● Amount of pumping & density control will depend on distance of strike point from tray.



Key LLD Parameters to be Determined Based on Pumping
Effectiveness and Practical Considerations

• Need to estimate dependence of pumping effectiveness on:

– Tray width wt,

– Tray major radius Rt,

∗ Including location relative to CHI gap.

• Other aspects determined by NSTX engineering & SNL experiments:

– Number of tray segments, gap between segments, “clocking” of segments.

– Horizontal or sloped.



0-D Particle Balance Model Provides Initial Insight into
Dependence of Pumping on LLD Parameters

• Set up coupled equations for:
– Number of core ions N ,
– Number of SOL ions + atoms.

• Include:
– Source due to NBI SNBI,
– Source due to gas puffing Sgas,
∗ Fractions deposited in core
ηNBI & ηgas.

– Divertor recycling coefficient Rp,
∗ Fraction of recycled gas

reaching core ηcore.
∗ Fraction that is pumped by Li
ηpump.

• Solve for
N(ηpump > 0)/N(ηpump = 0).
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0-D Pumping Probability ηpump
Estimated Using Plasma & LLD Parameters

• Factor in:

– LLD tray width & radius,

– Distance of tray from outer strike point,

– Up / down & in / out divertor particle flux ratios (from CCD camera),

– An 85% sticking probability for a D atom striking tray.

• Examine shots with different strike point location & flux expansion.

• Conclude: 15 - 20 cm wide tray just outside CHI gap
will provide ∼ 30− 50% density reduction.

• Objective of UEDGE modeling is to put these results on firmer footing.
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UEDGE Is a 2-D Edge Plasma Transport Code

• Mesh based on experimental equilibrium with one
coordinate following flux surfaces.

• Second coordinate orthogonal except near divertor surfaces.

• Solve equations for ni, Te, Ti, u‖, φ,

– Classical transport along field lines + flux limits,

– Anomalous transport across flux surfaces.

– Not solving φ equation and ignoring E × B & ∇B drifts here.

• Multi-species impurities can be simulated.

• Built-in fluid model for neutral atoms,

– Can be coupled to Monte Carlo neutral transport model like DEGAS 2.



Use UEDGE to Estimate LLD Density Reduction
Based on Simulation of Existing Shot

• Fix ne, Te, and Ti at core boundary using Thomson scattering & CHERS data,

• Adjust D, χ, Rp, etc. to match midplane profiles & divertor measurements,

• Switch to equivalent particle & power flux boundary conditions at core.

• Simulate tray as region of reduced recycling along divertor plate,
holding all other parameters fixed,

• Obtain NLLD
e /N0

e ,

– Vary tray major radius and width
⇒ curves analogous to those from 0-D model.

• Can also assess validity of assumptions and parameter values
entering into 0-D model.
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Adjust Transport Coefficients & Impurity Fraction to Match
Midplane Profiles and Power into SOL

• D = 1.2 m2/s,

• v increases with ψn from −20 m/s at core to +60 m/s at outer edge,

• Similarly, χe increases from 5.5 to 6.5 m2/s,

• χi = 4.5 m2/s.

• Set impurity fraction to reproduce estimated 4.1 MW flowing into SOL,

– Using global impurity fraction of 0.018.

– With an impurity lifetime of 1 ms.

– Radiation computed via coronal non-equilibrium
MIST model (Hulse & Post).



0

1 1019

2 1019

3 1019

4 1019

5 1019

6 1019

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

NSTX 116318 @ 0.970 s
Radial Density Variation

Thomson scattering
UEDGE, 110507

n e  (
m

-3
)

ψ / ψ
sep

0

50

100

150

200

250

300

350

400

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

NSTX 116318 @ 0.970 s
Radial Temperature Variation

T
e
 - Thomson scattering

T
e
 - UEDGE, 110507

T
i
 - UEDGE, 110507 

T
i
 - CHERS

T e,
i  (

eV
)

ψ / ψ
sep

Simulated UEDGE Midplane Profiles 
Close to Those Measured



Adjust Remaining Parameters to Match Divertor Signals

• 100% divertor recycling & 90% wall recycling.

• Simulated heat flux below IRTV data,

– But roughly correct shape.

– ⇒ Not enough power into SOL?

• Simulated Dα emission far below that observed with
divertor viewing CCD camera,

– Due to recombination?

– Trapping of Ly-α may also be important.
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Miscellaneous Considerations

• Use of disconnected double null configuration allows
UEDGE mesh to span entire lower divertor,

– Consistent with NSTX interest in high δ discharges.

• Need inner gap as large as possible to facilitate construction of UEDGE mesh.

• Core boundary at small enough ψn that neutral flux into core is negligible.

• Would like for simulations to self-consistently estimate lithium temperature,

– And estimate resulting Li evaporation.

• Once carbon incorporated into UEDGE as an explicit species,
will be interested in carbon ion flux striking LLD,

– Concerned with sputtering and creation of LiC.



Summary

• 0-D particle balance model indicates that 15 - 20 cm wide
tray just outside CHI gap provides 30− 50% density reduction
in the 3 different discharges analyzed,

– Remains to verify assumptions and results against
UEDGE simulations.

• Further refinement of UEDGE simulation of 116318 required
before that study can begin.

• Will need to assess sensitivity of UEDGE results to its input parameters,

– In simulating existing shot 116318,

– And in predictive simulations of LLD since transport
coefficients, etc. may be modified by presence of LLD.




