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Motivation

@ NsTx

Rotation plays an important role in fusion plasmas
— Turbulence suppression
— RWM and NTM stabilization

Hence, predictive understanding of rotation and
momentum transport desirable

— Predictions for ITER and future devices

Usually, momentum transport considered diffusive
— Recent studies on JT-60U suggest role of convection

Perturbative studies made on NSTX to investigate
role of momentum pinch at low aspect ratio



Momentum Transport Studied Using

Non-Resonant n=3 Magnetic PerturbationNSTX

* Previously been used to slow plasma rotation for

ITER-relevant RWM stabilization experiments
Zhu et al. PRL (2006)
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Perturbative 7, y,Can be Obtained from
Transient Application of n=3 Braking

NSTX
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Momentum Confinement Time Several Times Larger
than Energy Confinement Time

NSTX

e UsedlL/dt=T - L/r¢ relation to determine instantaneous T,

* Model rotation recovery following perturbation to determine perturbative t,
L(t) = 7, * [T — (T-Ly/t,) * exp(-t/z,)], where
L = Angular momentum

T = Torque (NB torque only)
L, = Angular momentum at time of nRMP turn-off
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Local Momentum Transport Investigated
During Spin Up After Perturbation

NSTX

e Toroidal rotation evolves according to momentum
balance equation

mnRaV¢ —n+V-T
oa /

where
n = Torque density, m = mass, n = density, V, = toroidal rotation, I'; = momentum flux

« TRANSP calculation of torque coupled with CHERS
rotation measurement -2 Fd) well determined

e Model F¢ evolution to determine diffusive and
convective contributions



Successful Distortion to Rotation Profile
Allows Separation of y,and V pinch

@® NsTx
 Use simple model for momentum flux
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* Must change V, independently of dV /dr
— can unravel relative contribution of x, and V(bpinch
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Including Momentum Pinch Improves Fit to

Momentum Flux
@ NsTx

* Non linear least squares fit of y,, V" profiles
— Assumed constant in time

 Inclusion of pinch improves reconstruction of
momentum flux at some radii
— Not perfect - Other off-diagonal terms? y,, V,P"" changing...?
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Perturbative Momentum Transport Reveal
Significant Inward Pinch
@ NsTx

* Relatively consistent result from different sized perturbation

— Within factor of 2
decoupling of V,, dV,/dr not ideal - trade-off between y, and V(I)Ioinch

— Smallest nRMP pulse did not produce sufficient distortion to analyze
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Inferred Inward Pinch Scales with
Theoretical Predictions

* Theoretical consideration of 10 :
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Reasonably Good Agreement Between Theory and

Experiment in Limited Comparison
@ NsTx
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Is a Momentum Pinch Really Needed to Describe

Rotation Evolution?
@ NsTx

« Perform predictive TRANSP run specifying momentum
transport to look at expected rotation evolution
— Compare y, only with y, + VPinch

e Over relatively short evolution time, cannot distinguish
rotation profiles from measurement
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Summary

@ NsTx

n=3 non-resonant magnetic braking successfully used for
perturbative momentum transport studies

Perturbative momentum confinement time several times greater
than energy confinement time

— Avoids issues of intrinsic rotation

Braking caused adequate distortion to rotation profile
— Enabling separation of y, and V pinch

Momentum flux suggests significant inward pinch
— Comparable to theoretical predictions

Rotation evolution period too short to definitively illustrate need
for pinch

— Repetitive perturbations + Fourier analysis probably needed to
improve this



