

Separation of Momentum Diffusion and Pinch Using n=3 Non-Resonant Braking Perturbations on NSTX

W. Davis, <u>W.M. Solomon</u>, S.M. Kaye, R.E. Bell, B.P. LeBlanc, D. McCune, J.E. Menard, S. A. Sabbagh

Motivation

VSTX

- Turbulence suppression
- RWM and NTM stabilization
- Hence, predictive understanding of rotation and momentum transport desirable
 - Predictions for ITER and future devices
- Usually, momentum transport considered diffusive
 Recent studies on JT-60U suggest role of convection
- Perturbative studies made on NSTX to investigate role of momentum pinch at low aspect ratio

Momentum Transport Studied Using Non-Resonant n=3 Magnetic Perturbations

 Previously been used to slow plasma rotation for ITER-relevant RWM stabilization experiments Zhu et al. PRL (2006)

Observed rotation damping consistent with neoclassical toroidal viscosity (NTV) theory

NSTX

Steady-state & transient application

Perturbative τ_{ϕ}, χ_{ϕ} Can be Obtained from Transient Application of n=3 Braking

Momentum Confinement Time Several Times Larger than Energy Confinement Time

- Use dL/dt = T L/ τ_{ϕ} relation to determine instantaneous τ_{ϕ}
- Model rotation recovery following perturbation to determine perturbative τ_{ϕ}

$$L(t) = \tau_{\phi}^{*} [T - (T-L_{0}/\tau_{\phi}) * exp(-t/\tau_{\phi})], \text{ where}$$

- L = Angular momentum
- T = Torque (NB torque only)
- L_0 = Angular momentum at time of nRMP turn-off

Local Momentum Transport Investigated During Spin Up After Perturbation

ISTX

• Toroidal rotation evolves according to momentum balance equation

$$mnR\frac{\partial V_{\phi}}{\partial t} = \eta + \nabla \cdot \Gamma_{\phi}$$

where

 η = Torque density, m = mass, n = density, V_o = toroidal rotation, Γ_{o} = momentum flux

- TRANSP calculation of torque coupled with CHERS rotation measurement $\rightarrow \Gamma_{\phi}$ well determined
- Model Γ_{ϕ} evolution to determine diffusive and convective contributions

Successful Distortion to Rotation Profile Allows Separation of χ_{ϕ} and V_{ϕ}^{pinch}

• Use simple model for momentum flux

$$\Gamma_{\phi} = mnR \left(\underbrace{\chi_{\phi} \frac{\partial V_{\phi}}{\partial r}}_{\textit{diffusion}} - \underbrace{V_{\phi} V_{\phi}^{\textit{pinch}}}_{\textit{convection}} \right)$$

• Must change V_{ϕ} independently of dV_{ϕ}/dr

– can unravel relative contribution of χ_{φ} and $V_{\varphi}^{\text{pinch}}$

Including Momentum Pinch Improves Fit to Momentum Flux

NSTX

- Non linear least squares fit of χ_{ϕ} , V_{ϕ}^{pinch} profiles
 - Assumed constant in time
- Inclusion of pinch improves reconstruction of momentum flux at some radii
 - Not perfect \rightarrow Other off-diagonal terms? χ_{ϕ} , V_{ϕ}^{pinch} changing...?

Perturbative Momentum Transport Reveal Significant Inward Pinch

- Relatively consistent result from different sized perturbation
 - Within factor of 2
 - decoupling of V_{ϕ}, dV_{ϕ}/dr not ideal \rightarrow trade-off between χ_{ϕ} and V_{ϕ}^{pinch}

NSTX

- Smallest nRMP pulse did not produce sufficient distortion to analyze

Inferred Inward Pinch Scales with Theoretical Predictions

- Theoretical consideration of low-k turbulence drive of momentum pinch
 - $v_{\text{Peeters}} = \chi_{\phi}/R [-4-R/L_n]$ (Coriolis drift) Peeters et al. PRL (2007)
 - $v_{Hahm} = \chi_{\phi} / R$ [-3]
 - (∇ B, curvature drifts) Hahm et al. PoP (2006)
 - Effect of off-diagonal terms ($\infty \nabla T_e$, ∇n_e)?
 - $\chi_{\phi}^{ss} < \chi_{\phi}^{pert}$ with pinch
- Important to consider when comparing χ_{ϕ} to χ_{i}

Reasonably Good Agreement Between Theory and Experiment in Limited Comparison

STX

Can comparisons with large variations in L_n be used to discriminate between theories?

Is a Momentum Pinch Really Needed to Describe Rotation Evolution?

VSTX

• Perform predictive TRANSP run specifying momentum transport to look at expected rotation evolution

- Compare χ_{ϕ} only with $\chi_{\phi} + V_{\phi}^{\text{pinch}}$

• Over relatively short evolution time, cannot distinguish rotation profiles from measurement

NSTX

- Perturbative momentum confinement time several times greater than energy confinement time
 - Avoids issues of intrinsic rotation
- Braking caused adequate distortion to rotation profile
 - Enabling separation of χ_{ϕ} and V_{ϕ}^{pinch}
- Momentum flux suggests significant inward pinch
 - Comparable to theoretical predictions
- Rotation evolution period too short to definitively illustrate need for pinch
 - Repetitive perturbations + Fourier analysis probably needed to improve this