Development of a Fast-Ion D-Alpha diagnostic for NSTX

M. Podestà¹, W. W. Heidbrink¹, R. E. Bell², W. Solomon², V. Soukhanovskii³

¹University of California, Irvine, CA-92697 US ²Princeton Plasma Physics Laboratory, Princeton, NJ-08543 US ³Lawrence Livermore National Laboratory, Livermore, CA-94550 US

Abstract

A Fast-Ion D-Alpha diagnostic based on active charge exchange recombination spectroscopy is being developed for NSTX. Results from the 2007 run, obtained with a prototype setup, indicate that fast ion signals have been successfully detected. The signals show a clear time correlation with the neutron emission from beam-plasma reactions. During modulation of the injected neutral beam power, variations on the fast ion slowing down time-scale are observed. The signal amplitude from different spectral regions scales accordingly with the fast ion D_{α} spectrum. Good correlation with other diagnostics is found. For the 2008 run, sixteen channels will cover the outboard poloidal cross-section with a resolution in space, time and energy of 5cm, 10ms and 10keV. In addition, three dedicated channels will monitor the signal from suprathermal ions on time-scales ~10µs at different radii. Each channel includes two views inside the plasma, intercepting/missing the neutral beam for a direct subtraction of the background signal not associated with fast ions.

NSTX parameters

Aspect ratio A	1.27
Elongation k	2.5 (3.0)
Triangularity δ	0.8
Major radius R ₀	0.85m
Plasma Current I _p	1.5MA
Toroidal Field B_{T0}	0.55 T
Pulse Length	1.5s
Auxiliary heating:	
NBI (100kV)	7 MW
RF (30MHz)	6 MW
Central temperature	1 – 3 keV

FIDA diagnostic, principles

FIDA response

1.0

0.5

-0.5

PITCH 0.0 F(E,p)

- FIDA sampling of fast ion distribution function:
 - Integration over phase-space
 - Higher energies and pitch more efficiently sampled

NSTX - FIDA setup, 2007

- Six fiber optic bundles, seven fibers each
- Two positions available: 100 or 120cm (swap on shot-to-shot basis)
- Vertical views at two toroidal positions
 - Intercepting/missing the beam for direct background subtraction
 - Assume toroidal symmetry

- *Active* view along beam B path
- High throughput collection optic
 - Focus on equatorial plane
- Up to 6MW of NB power
- Density $< 10^{20} \text{m}^{-3}$
- Temperature <1.5keV

Poloidal cross-section

NR

2007 setup : detector

- 2007 run: one prototype channel, integrating over 20 => 80keV range
- Borrowed photomultipliers and digitizer
 - Low quantum efficiency, noisy signals... can do much better in 2008!

Signals consistent with s(t) $\propto n_{\text{fast ions}} n_{\text{b}} < \sigma v >_{\text{CX}}$

- Behavior for active/passive views follows expectations
 - n_b from beam attenuation code
 - Charge-exchange cross-section includes T_e, n_e, Z_{eff}, ...
- Clear response to beam modulation
- Signals deteriorate for increasing densities (>10²⁰m⁻³)
 - Consistent with neutron flux
 - Consistent with 1st-order interpretation, neglecting weighting function
 - Need quantitative analysis and comparison with simulations

Response to Neutral Beam modulation

- FIDA signals vs. neutron rate
 - Average over 4 'identical' shots
- Clear response to beam modulation
 - Prompt rise/drop, consistent with beam ON/OFF
 - Slower rise/drops on ~10ms time scale (fraction of slowing-down time for beam ions)

Example: Deuterium plasmas, 4-6MW of NB power

Filter angle scan shows qualitative agreement with expected spectral shape

Fast ion dynamics vs. MHD instabilities

• Effects of instabilities - *scenario*

Fast ion dynamics vs. MHD instabilities/2

- FIDA signal consistent with temporal evolution of neutron rate
 - Response to 'catastrophic' events clearly visible
 - Details on fast time-scales buried into noise
 - Need more careful analysis

Fast ion dynamics vs. MHD instabilities/3

Correlation with sFLIP edge loss diagnostic

• Look at energy-averaged sFLIP signal

– Measuring fast ion losses at the edge, time resolution: 1ms

- Spikes in sFLIP signals correlate with neutron rate and FIDA signal drops
- Fast ion losses confirmed (see D.S. Darrow, TP8.82)

2008 setup: spectrometer

Resolution:

10keV, 5cm, >5ms

- 2x16 channels (active and passive views)
 - CCD detector
 - Block cold D_{α} , measure red/blue-shifted wings

2008 setup/2: 'fast' system

- 2x3 channels (active and passive views)
 - PMT detector, expected bandwidth ≥ 20 kHz

Optics + bandpass filter

Detector

Acquisition and control PC

- Spatial calibration done
- Final assembly and alignment in progress

Resolution:

- Energy-integrated
- Measure at 100, 120, 140cm
- Time <1ms

Summary

- First results from 2007 prototype setup encouraging
 - Fast ion signals measured on NSTX
 - Good consistency with other diagnostics (neutron rate, cold D_{α} emission, sFLIP, ...)
 - Background subtraction based on active/passive views works
 - Correlation between fast ion dynamics and MHD instabilities observed => evidence for fast ion losses from the core
- Installing complete FIDA setup for 2008 Run
 - Two complementary instruments:
 - Spectrometer: high spatial resolution, energy and time resolved
 - 'Fast' system: three radial position, energy-integrated, high temporal resolution <1ms
 - Spatial calibration done, spectral calibration under way

The support of the NSTX team is gratefully acknowledged. Work supported by US-DOE grant DE-FG02-06ER54867 and contract DE-AC02-76CH03073