Structure and evolution of ELMs in the edge and SOL of NSTX

R. J. Maqueda

Nova Photonics Inc.

R. Maingi, C. E. Bush

Oak Ridge National Laboratory

K. Tritz

Johns Hopkins University

J.-W. Ahn, J. A. Boedo

Uuniversity of California, San Diego

S. Kubota University of California, Los Angeles

E. Fredrickson, S. J. Zweben

Princeton Plasma Physics Laboratory

and the NSTX Research Team

49th APS-DPP Meeting

Nov. 12-16, 2007 Orlando, FL TP8.092

Abstract

Edge Localized Modes (ELMs) are routinely seen during H-mode operation in NSTX. These ELMs have been characterized as large-sized Type I, mediumsized Type III, and small Type V ELMs. Recently, an experiment was dedicated to characterize the structure and evolution of these 3 ELM Types in NSTX utilizing multiple diagnostics. These diagnostics include: fast-framing digital cameras, soft X-ray arrays, edge probes (both tile-embedded and reciprocating), reflectometers and Mirnov arrays. In general, the ELM evolves from a perturbation of the edge topology that quickly develops (<30 μ s) into strong filamentation that propagates both radially and poloidally/toroidally in the SOL. This ELM filamentation is then followed by an increased level of edge turbulence (and blobs) resembling, momentarily, that observed during L-mode phases. This later blob filamentation is clearly distinct from the initial ELM structures. The characteristics and differences observed in all 3 ELM Types are presented.

Work supported by DoE grant DE-FG02-04ER54520, DE-AC02-76CH03073, and DE-AC05-000OR22725.

Motivation

- The structure of edge localized modes (ELMs) in the scrape-off layer is of great importance for future devices like ITER, where they can potentially affect the lifetime of plasma facing components.
- The National Spherical Torus Experiment (NSTX) is well suited with diagnostics usefull to study the structure and evolution of ELMs in the edge and scrape-off layer.

Type I, III and V ELMs are observed in NSTX

Other ELM characteristics in NSTX

Type I ELMs

- Frequency increases with P_{NBI}.
- Amplitude not affected by P_{NBI} but decrease with density and with δr_{sep} towards LSN.
- Generally, no electromagentic precursor.
- Inward cold pulse propagation.

Type III ELMs

- Frequency decreases with P_{NBI} and increases with density (i.e., decreases with loss power).
- Precursor with electromagnetic signature (<40 kHz).
- No inward cold pulse propagation.

Type V ELMs

- Can coexist with Type I.
- Rotating n=1 electromagnetic mode/filament.
- Mode duration of up to 2 toroidal transit times (>1 ms) times.
- No ELM filament detachment.

NSTX ELM bibliography

- R. Maingi et al., "ELMs and the H-mode pedestal in NSTX", J. Nucl. Mater. 337-339 (2005) 727.
- R. Maingi *et al.*, "Observation of a high performance operating regime with small edge-localized modes in the National Spherical Torus Experiment", Nucl. Fusion 45 (2005) 264.
- R. Maingi et al., "H-mode pedestal, ELM and power threshold studies in NSTX", Nucl. Fusion 45 (2005) 1066.
- R. Maingi *et al.*, "Characterization of small, Type V edge-localized modes in the National Spherical Torus Experiment", Phys. Plasmas 13 (2006) #092510.
- R. Maqueda et al., "Structure of MARFEs and ELMs in NSTX", J. Nucl. Mater. 363-365 (2007) 1000.

ELMs observed with GPI diagnostic

- Camera used to view visible emission from outer edge just above midplane.
- D₂ gas puff is injected to increase image contrast and brightness. Gas puff does not perturb local (nor global) plasma.
- Emission filtered for D_{α} light from gas puff: I $\propto n_o F(n_e, T_e)$
- D_{α} emission only seen in range ~ 5 eV < T_e < 50 eV
- Field of view covers ~24 cm of outer edge.
- For more details: "Gas puff imaging of edge turbulence", R.J. Maqueda *et al.*, Rev. Sci. Instrum. 74(3), p. 2020, 2003.

Type III ELMs

ELM filamentation after ELM onset

Type III ELM

ELM sequence

- Mode growth.
- Birth of ELM filaments.
- Filament detachment (except in Type V ELMs).
- Filament radial and poloidal/toroidal propagation in SOL – eventual interaction with plasma facing components.
- Turbulent filamentation and blobs, L-mode like.
- Recovery of H-mode edge.

D_α filterantenna limiter shadow ~4 μs exposures121212 frames/sseparatrix -

High n structure observed on wide angle view Type III ELM

Mode growth start 40 µs before ELM filamentation

- Mode growth observed in RMS fluctuation level and FFT spectrum.
- PDF (skewness and kurtosis), as well as poloidal autocorrelation length, remain unchanged.
- FFT spectrum shows increase in the 2 cm⁻¹ range, broadband.

ELM filamentation followed by L-mode like turbulence and blobs

- Intermittency in the scrape-off layer (∆r~3.5 cm) shows decaying fluctuation level.
- Fluctuation levels of 40% RMS are characteristic of L-mode discharges [S. J. Zweben *et al.*, Nucl. Fusion 44 (2004) 134].
- Fluctuation (blobs) decay to the H-mode level of ~10% RMS within 0.3 ms.
- Fluctuation characteristics (autocorrelation lenghts and PDF skewness) are similar to "blob" activity.

ELM filamentation occurs within 30 μs of ELM onset

- Primary ELM filaments can be distinguished from turbulent "blob" filaments by their brightness, density and radial velocity. (See also slide #12.)
- Secondary ELM filaments
 have similar characteristics to
 turbulent blobs (v_r~1 km/s) and
 are presumably due to
 degraded edge confinement
 properties, like a temporary
 and local loss of the E_r well.

Filaments in 6 Type III ELMs and 6 Type I ELMs

Filament detachment – a non-linear, complex phenomena

Filament detaches from mode structure

Shot 124667, from t=252.676 ms (top left) to t=252.726 ms (bottom right) Filament propagates beyond shadow of antenna limiter (dotted line)

Shot 124667, from t=255.085 ms (top left) to t=255.135 ms (bottom right)

Interaction with plasma facing component follows poloidal movement of filament

Type I ELMs

Primary filament(s) not always present on GPI view for

- Although Type I ELMs are similar to Type III ELMs, a primary filament is not always seen on the GPI view.
- Secondary filaments have same characteristics as those on Type III ELMs.

Radial velocities present continuum between primary and secondary (blob) filaments

Type I ELM

- The radial velocity of the filaments, both primary and secondary (blob), have a positive scaling with their density.
- The radial velocities present the same scaling characteristics, possibly due to the same ExB drive and associated physics.

* All filaments, 6 ELMs

+ Bright filaments, 58 ELMs

Poloidal velocities are similar between primary and secondary (blob) filaments

Type I ELM

٠

Poloidal velocities and D toroidal velocities are indistinguishable in the GPI V_{pol} (km/s) field of view. Primary ELM filaments -5 2.0 have a preponderance to rotate co-I_p and core 124662 and 12466² plasma rotation. -10Shot * All filaments, 6 ELMs 4×10¹³ 1×10¹³ 2×10^{13} 3×10^{13} 5×1013 Ω + Bright filaments, 58 ELMs n_e (cm⁻³) Filament density 16

Evaluation of density (and temperature) within filament

Following work in J. R. Myra et al., Phys. Plasmas 13 (2006) #092509.

• The D_{α} image intensity (I_{α}) is given by:

$I_{\alpha} = n_o A F(n_e, T_e) L$

wheren_ois the neutral deuterium densityAis the radiative decay rateF(n_e,T_e)is the population ratio for the emitting energy levels, obtained from
Degas2 modeling (D. Stotler, PPPL)Lis the line of sight integration length

- From the T_e and n_e profile in absence of filaments (Thomson scattering, B. LeBlanc, PPPL) $F(n_e, T_e)$ is evaluated together with n_o A L = I_a / $F(n_e, T_e)$. The product (n_o A L) is assumed <u>constant in time</u>, even as filaments move by.
- Assuming filament convects plasma from its birth place as it moves in the scrape-off layer without parallel particle and energy losses then, within the filament, T_e is a function of n_e given by the <u>pedestal profile</u>:

 $T_e = T_e(n_e)$

From the filament image intensity I_α, F(n_e,T_e) = I_α / (n_o A L), and with the "convection assumption" T_e = T_e(n_e), this results in an unique pair of n_e and T_e values for the emitting filament.

Filaments show similar distribution respect to their normalized radial velocities

Type I ELM

- Values for density and temperature in filament are obtained (slide #14) corresponding to birth locations reaching the top of the pedestal.
- The mean radial velocities are $\sim 2\%$ of the ion sound speed for the plasma within the filament.

Primary ELM filaments do not show electro-magnetic signatures

Type I ELM

- Bdot signal does not show expected waveform for "approaching" current carrying filament.
- Absence of electro-magnetic signature imposes limit on current possible within filament to <500 Amp.
- Bdot coils ~12 cm away from limiter shadow.

hn16

hn15

Type V ELMs

Primary filament in Type V ELM remains attached

- Primary filament consists of "lip" in flux surfaces that rotates poloidally/toroidally.
- Within a short time scale $(\sim 200 \ \mu s) T_e$ and n_e profiles are displaced outward, displacing the D_{α} emission region.
- Perturbed flux surface increases tubulence and generation of secondary filaments.

antenna limiter shadow-

D_α filter 4 μs exposures 121212 frames/s

Type V ELM filament characteristics

- Well aligned with local magnetic field.
- Plasma within filament has similar T_e and n_e than pedestal plasma.
- Toroidal velocity: ~8 km/s (~0.9 kHz at R~1.45 m) ...counter I_P and plasma rotation
- Radial velocity: ≤ 0.2 km/s
- Crossfield widths: ~12 cm poloidal, ~3-4 cm radial
- Current: ~400 A (~100 kA/m²) ...co-l_P
- Some ELMs show 2 filaments, separation might indicate n = 3-4. But... no full n = 3 or 4 structure seen on diagnostics (Mirnov array).
- Lifetime: 0.5 to 1 ms ...longer than the peeling-ballooning "detonation" time for NSTX.

R. Maingi et al., Phys. Plasmas 13 (2006) #092510

Movie clips

- (1) **Type I ELM**: Wide view GPI view, D₂ puff.
- (2) **Type I ELMs**: Wide view GPI view, D₂ puff.
- (3) **Type III ELM**: Wide view GPI view, D₂ puff.
- (4) **Type III ELMs**: Wide view GPI view, D₂ puff.
- (5) **Type V ELM**: Wide view GPI view, D₂ puff.
- (6) Type V ELMs: GPI view, no puff.
- (7) L-mode: Wide view GPI view, D_2 puff.
- (8) Ohmic, BEaP experiment: GPI view, D₂ puff.

Summary

- ELM filamentary structure is characterized by high density/temperature, high v_r, "primary" filaments and filaments originating in increased turbulence following the ELM, termed "secondary" filaments.
- <u>Corollary</u>: care should be placed in identification of ELM filaments when observing with limited spatial resolution diagnostics (like single point probe measurements).
- Type III ELMs show a higher number of primary filaments than Type I ELMs.
- Results are consistent plasma being convected by filaments from birth place in the pedestal without parallel particle and energy losses.
- Secondary filament activity has characteristics of temporary L-mode turbulence.
- In Type V ELMs the primary filaments do not detach, being much longer lived than those on Type I and Type III ELMs. General ELM characteristics are substantially different for Type V ELMs.

