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The objective of this work is to obtain a 2D, 
one-field model that realistically models 
tokamak edge turbulence but is also amenable 
to analytic treatment. 



  

Outline

� Tokamak edge turbulence is 2D.  Or is it?

� Disparities between parallel and perpendicular frequencies give us 
some fairly small parameters.

� Energy flow is controlled by the phase shift between ne and f, which is 

controlled by competition between parallel and perpendicular physics.

� The near X-point region's magnetic geometry strongly constrains 
parallel coupling. A gyrofluid formulation in field-line-following 
coordinates allows a simple, accurate model through this region.

� Effective parallel resistivity provides the dominant dissipation 
mechanism.

� We may split the state variables into one which experiences rapid 
parallel coupling (�b�) and one which experiences almost no direct 
parallel coupling (�a�).

� The parallel envelope of a is constrained by energy balance.

� What are the next steps?



  

Data shows edge turbulence is nearly 2D.

� Images of emission from 
turbulent density and 
temperature fluctuations 
in the edge show 
elongated filaments.

� Correlation lengths are 
long along B, but short 
perpendicular to B.

� In fluid turbulence, 2D 
structure has important 
implications, such as 
inverse energy cascade.

S.J. Zweben.  TTF April 
2004. IPELS 2003.



  

Electrons experience a rapid parallel 
coupling but ion gyrocenters don't...

Inside the separatrix, most flux 
surfaces are covered by a single 
field line.

 k||=0 generally not allowed, 

except for zonal modes

Electron parallel force balance exerts 
a rapid, controlling influence.

Seeks   Ñ||(f-ne) = 0

Seems to indicate flutelike 
structure

However, ions' parallel transit time 
is very long relative to turbulent 

timescales  ® no effective direct 

parallel coupling for ion 
gyrocenters.



  

...as is seen by comparing parallel rates 
near the NSTX separatrix.

� Edge physics controlled by geometric scale ratio:

�
 k||~1/R ,  Ñne0 ~ne0/Lp, ratio Lp/R .1/20 in NSTX

� Drift turbulence scales as  w* ~ ( kyrs) cs/Lp 

� In this document, frequencies normalized against cs/Lp

� Parallel effects penalized by geometric factor  ²̂
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Although small, nonadiabatic fluctuations control 
the energy balance.

With  k||¹ 0 and rapid parallel 

electron response, fluctuations with  

f ¹  ne tend to be small, but are 

very important because:

� Parallel resistivity  h j|| is the 

dominant dissipative channel

� Phase shift due to �f   ne 

determines gradient drive

stable unstable



  

Perpendicular physics drives f and ne apart but parallel 

electron motion brings them back together.

� Polarization nonlinearity and curvature drive stir up nonadiabatic 

fluctuations (f ¹  ne).

� Ohm's Law dissipates them.

� If perpendicular scale smaller than resistive skin depth, fluctuations damp 
due to parallel electron diffusion, either: 

� D||~ vte2/ne  (for  k^rs  &1)

� effective D|| ~ vte2 / ne(k^rs )2 (k^rs .1), due to parallel electron 

diffusion combined with low- k^ Poisson equation

� If perpendicular scale larger than resistive skin depth, nonadiabatic 
fluctuations propagate in parallel direction with the Alfvén speed.

� Balance of nonadiabatic drive and damping sets turbulent drive
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X-point magnetic structure limits 
parallel coupling.

� Curvature effects and rapid 
parallel coupling suggestive of 
ballooning transform

� However, near-separatrix 
magnetic geometry dominated 
by X-point

� Flutelike perturbations 
strongly constrained

� Extended parallel correlation 

(k||<1/Rq) extremely unlikely

See J. R. Myra and D. A. Dippolito, 
Phys. Plasmas 12, 029511 (2005) R. J.  Maqueda, private 

communication.





  

With field-line-following coordinates, all model 
magnetic geometry effects are contained in a few 

simple operators.
� Transform to field-line-following perpendicular variables.

� Let x, y be field-line labels equal to radial and poloidal positions at 
the outboard midplane region, which is taken to be shearless, and let z 
measure toroidal distance.

� Drift frequencies proportional to  Ñne´Ñf ×    (equiv. {ne, f}), thus 

unaffected by the area-preserving field deformation, thus ind. of z.

� Curvature (    ), Laplacian (Ñ2), and gyroaveraging ( G0) operators 

become z-dependent due to the X-point field structure.
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Drift wave is unstable, but Alfvén waves are strongly damped.

� Neglecting the parallel variation of the 
magnetics, wave behavior can be determined 

with a homogeneous approximation (i.e. a k||)

� Gyrofluid formulation robust for arbitrary 
perpendicular wave number. 

� Parallel resistivity and parallel electron 
Landau damping are the only dissipation 
included in these linear equations.

� Drift wave unstable for all k^ (but would be 

stabilized by curvature-driven phase mixing 

for modestly large k^)

� Alfvén waves stable for all k^, heavily 

damped by parallel resistivity and electron 

Landau damping for k^rs>1 (hA~O(cs/Lp)) 

Frequencies in  wL^/cs, wave numbers in k^rs

Solid line is real frequency, dashed is growth rate

Drift

Alfvén (positive)

Alfvén (negative)



  

Other dissipation mechanisms are weaker than parallel resistivity.

� Through the X-point region, k^ grows exponentially, with a total enhancement &10x 

(see X-point magnetic model slide).

� With Alfvén waves driven at the outboard midplane and damping into the X-point 

region, the dissipation that matters most is the one that acts at lowest k^, since that is 

what the wave �sees first.�

� At what scales can various dissipation mechanisms' damping rates compete with the 
resistive and electron Landau damping we calculated for the Alfvén waves,  

hA~cs/Lp (which is active for k^rs&1)?

� Ion-ion collisions: k^ri &20

� Electron-ion collisions: k^ri&40

� Curvature-driven phase-mixing: k^ri&15

� Nonlinear E´B phase-mixing: k^ri~1?, not more nor less?

� Since k^ varies rapidly with z, this dissipation may act over only a short 

parallel length, likely causing limited damping.



  

Linear decomposition to adiabatic/nonadiabatic variables 
clarifies nature of parallel coupling.

� Polarization effects included in a nonnegative z-dependent operator
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� The transformation neatly separates out the parallel coupling, since the adiabatic 
variable a has does not excite or respond to parallel current.

� While b's equation has a complicated form, experience with an analogous cold-ion,  

k||=1/Rq model suggests that b will be amenable to approximate treatment. We expect 

it to work in this case too since, neglecting the nonlinear electron inertia term, the 

order unity variables a and j|| are now coupled only via the expected-small variable b.
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Energy balance must hold for a in each perpendicular plane...

and that reduces in the cold-ion limit to a Hasegawa-Mima-like energy
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� Since a's equation contains no parallel coupling term, a's evolution must satisfy 
energy balance separately in each perpendicular plane.

� Formally employing periodicity or spatial homogeneity in x and y, it is possible to 
construct an energy equation for a by multiplying a's evolution equation by a and 

integrating over the periodic box in x and y (integral denoted as  á×ñ)

The �adiabatic energy� Ea(z) is a nonnegative functional of a that may be written in 

Fourier space as
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...which constrains the parallel extent of a.

�By comparison of the turbulent drive (wn) and the curvature transfer to nonadiabatic 

fluctuations (                                  , with Ls the X-point magnetic shearing length), we 

find a's energy loss to b through curvature coupling surpasses the gradient drive when

�Beyond this z (towards the end of the X-point region), 
adiabatic fluctuations may only survive by absorbing 
energy from b, acting as part of the dissipation 
mechanism rather than a driver 

�Outgoing parallel current acts as an energetic 
sink for b
�Strong shear does not allow efficient coupling 
to fluctuations one poloidal transit down the 
field line

�Heuristic, dubious energy arguments suggest 
that a's parallel envelope behaves as:
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density gradient.
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How get from here to the desired closure?

� An approximate dynamical treatment of the competition of a's 
tendency to develop nontrivial parallel structure with b's 
tendency to encourage flutelike structure should yield a parallel 
envelope for a.

� In some ranges of perpendicular wave vector, significant 
nontrivial parallel structure may be inevitable�this will 
likely cause both enhanced dissipation and, through the 

resulting ne,f  phase shift, gradient drive.

� With a parallel form for a and using the approximation of rapid 
parallel timescales for b, we may calculate an approximate 
closure for b as a function of a, as well as a parallel envelope 
for b.

� Perpendicular �sourcing� of b from a is balanced against 
dissipation and �end losses� to the inboard midplane.

� A priori estimates, such as the smallness of perpendicular 
collisional effects, should then be verified for the full closure.



  

Summary

� Rapid parallel electron motion and X-point geometry provide 
strong constraints on the parallel form of turbulent 
fluctuations in the tokamak edge.

� Careful decomposition of fluctuations exposes the structure of 
the parallel coupling.

� Energy balance limits the extent of adiabatic fluctuations a in 
the parallel direction.

� Specific steps are planned to obtain an approximate closure 
for b in terms of a, to yield a 2D, 1-field model that 
realistically models the tokamak edge but is also amenable to 
analytic treatment.
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