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Abstract

Electron and carbon inventory analysis is used to infer the fueling 

efficiency (FE) of a pulsed high-pressure supersonic D2 jet, produced by a

low field side supersonic gas injector (GI) at a flow rate 3-9x1021 s-1 at

distance 5-15 cm from the plasma.  In ohmic and 2-6 MW NBI-heated L-

and H-mode plasmas, the FE of the Mach 4 jet is found to be in the range 0.1-0.4,

higher than FE of a conventional GI.  During supersonic GI pulses, the pedestal

density increases by 5-40% suggesting that particles are deposited mainly in the

pedestal region.  

A “single particle” model of lower-end pressure supersonic GI fueling is 

developed using the DEGAS 2 neutral transport code.  Details of a high-pressure 

jet interaction with background plasma are not included in the model.  The 

modeling suggests that adding a directed velocity does not guarantee a FE 

improvement. While the supersonic GI does focus the molecules towards the core, 

there is a reduction in the number of dissociation product atoms that provide much 

for the transport for the conventional puff, resulting in comparable FE’s of a 

supersonic and a conventional GI’s.
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• Low field side (LFS) supersonic gas injector (SGI) has been 
used for fueling of ohmic and 2-6 MW NBI-heated L- and H-
mode plasmas
– SGI-fueled H-mode power threshold low (< 2 MW NBI), H-mode 

access reliable

– SGI injects deuterium at G < 5x1021 particles / sec in quantities 10-
30% of NSTX plasma inventory in a continuous fashion, with 
measured fueling efficiency 0.1-0.3

• DEGAS 2 simulations indicate SGI fueling efficiencies of 30-
35%, which roughly agree with the measured NSTX values

• In the “low-flow” regime of the DEGAS 2 code, including the 
large directed velocity of the SGI does not guarantee an 
improvement in fueling efficiency over a conventional gas puff

Summary
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Supersonic gas injector is a complex multi-diagnostic 

package on a moveable probe 
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Supersonic gas injector uses de Laval shaped nozzle and 

ms-response piezo valve

L = 23.4 mm

d
throat

= 0.254 mm

• NSTX SGI is operated at flow rates 20-65 Torr l /s  
(1.5 - 4.5  x 1021 s-1) - unique fueling tool

• Supersonic deuterium jet properties: 

– Jet divergence half-angle: 6°- 25°(measured)

– Mach number M = 4 (measured)

– Estimated: T ~ 60 - 160 K, n < 5 x 1023 m-3, Re = 6000 

vflow = 2400 m/s , vtherm ~ 1100 m/s
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Only very high pressure supersonic gas jet penetrates plasma

Plasmoid

Bt

References: Rozhansky et al. NF 46 (2006) 367 
Lang et al. PPCF 47 (2005) 1495

• Supersonic gas jet is a low divergence, high 

pressure, high density gas stream with low 

ionization degree - bulk edge/SOL electrons do 

not fully penetrate gas jet

• Depth of penetration is determined by jet 

pressure and plasma kinetic and magnetic 

pressure
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Supersonic gas jet deposits particles at the edge

0.75 MA Ohmic

0.8 MA 3 MW NBI 

H-mode

• In H-mode plasmas, ne “ear”

height and width often increase, 

edge/pedestal and/or core Te

decrease by < 15 %

• In Ohmic plasmas edge density 

rise is often observed

• Supersonic gas jet does not 
penetrate further than 1-4 cm from 

separatrix 
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Fueling efficiency is higher in inner wall limited plasmas

• Instantaneous fueling efficiency (FE) 

is calculated as dNe/dt * Γ-1

• In Ohmic plasmas, FE is a function of 

SGI-LCFS distance (SGI at Γ~40 torr-

l/s) in LSN configuration

• FE in inner wall-limited plasmas 

higher than in diverted configurations

• FE in LSN H-mode plasmas is 0.1-0.3 

(SGI at Γ~65 torr-l/s ~ 4.3x1021 s-1)
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Gas jet fueling efficiency in low flow regime is a weak 

function of distance to plasma

0.75 MA

Ohmic

• Experiments in ohmic plasmas were 

conducted at reduced ΓSGI=2.8 x 1021 s-1

• Calculated instantaneous fueling 

efficiency (dNe/dt) * ΓSGI, then averaged 
over ΓSGI

• Plasma density and fueling efficiency is a 
weak function of SGI-separatrix distance 
in this regime
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High-pressure SGI-Upgrade appears to have same 

fueling efficiency 

• Reduced HFS flow rate by x 3 
(plenum pressure from 1100 Torr
to 500 Torr)

• SGI-U gas jet operated at 5-7 cm 
from plasma separatrix

• Injection pulses result in pedestal 
density increase, SOL density 
same

• Analysis of 2007 data is in 
progress to determine fueling 
efficiency of high-pressure SGI 
fueling



DPL – APS ‘07 11

Simulation Goals

• Model the SGI on NSTX with available computational tools

• Compare simulated fueling efficiency with measured values on NSTX

• Is there an improvement over a conventional puff in a low-flow regime?

• Can we understand the behavior of the SGI without including the 
complex physics of a high-pressure jet?
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DEGAS 2 – A Monte Carlo Neutral Transport Code

• Monte Carlo neutral transport code
– Problem geometry can be irregular and complex 

– Allows an arbitrary level of atomic physics detail

• Uses externally specified geometry, plasma profiles and neutral source 
distribution
– Plasma profiles from past NSTX shots used for these simulations

• Propagates neutral particle paths from the source, tallying interactions 
with the plasma until only ionized products remain

• Outputs include neutral density and reaction rate profiles
– Ion source and D

α
emission profiles are of particular interest for SGI studies
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NSTX Simulation Parameters

• 2-D plasma mesh constructed with EFIT equilibrium
– Separatrix location is important to accurately calculate 

fueling efficiency, so ~1mm mesh used

– Remaining volume filled with triangles

• D2 source is 1mm wide, at a radius of 1.5-1.7m
– 4x1021 particles / second source rate

– SGI: 2.4 km/s directed velocity,160K temperature

– Puff: 300K temperature

• Simulations are time independent
– ne, Te from a single Thomson Scattering time point

• Three NSTX shot profiles used:  
– 115346 – Ohmic with SGI

– 115347 – Ohmic with no SGI (reference shot)

– 117994 – NBI heated H-mode

SGI region of interest
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SGI modeled by imposing a large directed velocity on the distribution
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DEGAS 2 – Physics Limitations

• “Single Particle” model
– Shielding of inner jet by outer neutrals not included

– Neutral-neutral scatters not calculated for these simulations

• Assumes neutrals do not have an appreciable effect on background
quantities (ne, Te)

– Simulations are not “self-consistent”

– Local plasma cooling from the high density jet not modeled

• More exotic phenomena such as molecular clustering and an ExB drift 
of the jet plasmoid are also not in the model

• But DEGAS 2 provides a reasonable approximation to SGI 
experiments previously done on NSTX in a “low-flow” regime

• Transport stops at ionization, so “all ions are treated equally” for 
calculating fueling efficiency
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Addition of a directed velocity does not guarantee an 

improvement in fueling efficiency!

• FE = η = D+ source inside separatrix / Particle injection rate

• SGI fueling efficiencies roughly agree with experiments (~30-35%)

• But they are not higher than the FE of a simulated gas puff

– Example: for an H-mode with the injector located at 1.6m, a thermal puff 

yielded a fueling efficiency of 38.1%, the SGI 35.8%
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Molecules do not penetrate the separatrix, so secondary 

transport of product atoms is important

Conventional gas puff Supersonic gas injector

Molecular Density D2 (m
-3)
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SGI D2 is ionized near, but mostly outside of the separatrix

Puff molecular ionization rate is smaller

Conventional gas puff Supersonic gas injector

Molecular Ionization Rate (m-3 s-1)
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A larger fraction of the gas puff D2 dissociate

Product atoms have ~2-3eV and can transport a significant additional distance

Conventional gas puff Supersonic gas injector

Molecular Dissociation Rate (m-3 s-1)
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Puff produces a significant D° population
The SGI D° density is localized, and the flux-surface averaged density is smaller

Conventional gas puff Supersonic gas injector

D° Atomic Density (m-3)
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The SGI D+ source is intensely localized near the separatrix

A modest increase in the penetration should significantly improve fueling efficiency

Conventional gas puff Supersonic gas injector

D+ Source Rate (m-3 s-1)
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The conventional puff sources more ions than the SGI inside the separatrix
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Conclusions

• Low field side (LFS) supersonic gas injector (SGI) has been used
for fueling of Ohmic and 2-6 MW NBI-heated L- and H-mode 
plasmas
– SGI injects 10-30% of NSTX plasma inventory in a continuous 

fashion, with measured fueling efficiency 0.1-0.3

• The directed velocity of the SGI is not the primary factor in  
enhancing penetration over a gas puff

– Collective effects are necessary to improve fueling efficiency

• Future SGI experiments should deviate significantly from the 
DEGAS 2 results as higher pressure regimes are reached


