Dependence of SOL widths on plasma parameters in NSTX

College W\&M
Colorado Sch Mines
Columbia U
Comp-X
General Atomics
INEL
Johns Hopkins U
LANL
LLNL
Lodestar
MIT
Nova Photonics
New York U
OId Dominion U
ORNL
PPPL
PSI
Princeton U
Purdue U
SNL
Think Tank, Inc.
UC Davis
UC Irvine
UCLA
UCSD
U Colorado
U Maryland
U Rochester
U Washington
U Wisconsin

Joon-Wook Ahn, University of California - San Diego

R. Maingi (ORNL), J. Boedo (UCSD), V. Soukhanovskii
(LLNL), B. Leblanc, R. Kaita (PPPL)
and the NSTX Research Team
2008 APS-DPP
Dallas, TX
November 19, 2008

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U
Kyushu Tokai U NIFS
Niigata U
U Tokyo
JAEA
Hebrew U
loffe Inst
RRC Kurchatov Inst
TRINITI
KBSI
KAIST
POSTECH
ASIPP
ENEA, Frascati CEA, Cadarache

IPP, Jülich
IPP, Garching
ASCR, Czech Rep
U Quebec

Dependence of SOL widths on nebar

Edge density profile is 'fixed' during the H -mode density ramping period

- $\mathrm{T}_{\mathrm{e}, \text { sep }}$ estimated from 2 point model (i.e. from power balance)
- Re-align TS profiles as a function of R-Rsep with separatrix location determined by $T_{e, \text { sep }}$
- $\mathrm{n}_{\mathrm{e}, \text { sep }}$ is fixed irrespective of nebar

This enables us to ensemble TS profiles at different time slices for identical H -mode shots to construct a profile with higher spatial resolution

Reliability of ensembled TS profiles

- X^{2} stays low up to $T_{e, \text { sep }}=45 \mathrm{eV}\left(T_{e, \text { sep }}=35 \mathrm{eV}\right.$ from 2-point model $)$
- For $\mathrm{T}_{\mathrm{e}, \text { sep }}>45 \mathrm{eV}$, ensembled profile becomes more scattered
$\rightarrow \mathrm{T}_{\mathrm{e}, \text { sep }}=35 \mathrm{eV}$ appears to be in right ball park

Density scan in ELM-free H-mode: $\lambda_{\text {ne }}$ stays constant

- nebar continuously rises during the H -mode, by a factor of ~ 2, with $\mathrm{n}_{\mathrm{e}, \text { sep }}$ fixed
- $\lambda_{\text {ne }}$ stays constant at $\sim 1.1 \mathrm{~cm}$

Density scan in ELM-free H-mode: $\lambda_{\text {Te }}$ stays constant

- nebar continuously rises during the H -mode, by a factor of ~ 2, with $\mathrm{n}_{\mathrm{e}, \text { sep }}$ fixed
- $\lambda_{\text {Te }}$ stays constant at $\sim 0.9 \mathrm{~cm}$

Density scan in ELM-free H-mode: λ_{q} stays constant

- nebar continuously rises during the H -mode, by a factor of ~ 2, with $\mathrm{n}_{\mathrm{e}, \text { sep }}$ fixed
- λ_{q} stays constant at $0.4-0.5 \mathrm{~cm}$

Density scan result for Type-V ELMy H-mode: λ_{q} stays constant

- nebar increase by $\sim 40 \% \rightarrow \lambda_{q}$ stays at $0.8-0.9 \mathrm{~cm}$
- $\lambda_{T e}$ and $\lambda_{\text {ne }}$ also stay constant irrespective of nebar

Dependence of SOL widths on I_{p} and power

λ_{Te} from TS measurement decreases with increasing Ip while $\lambda_{\text {ne }}$ stays constant, in Type-V ELMy H-mode

$$
\text { Ip: 1MA } \rightarrow \text { 800kA }
$$

- $\lambda_{\text {Te }}: 0.55 \mathrm{~cm} \rightarrow 0.75 \mathrm{~cm}$
- $\lambda_{\text {ne }}$: staying at $\sim 0.65 \mathrm{~cm}$

λ_{Te} from probe measurement decreases with increasing Ip while $\lambda_{\text {ne }}$ stays constant, in Type-V ELMy H-mode

Ip: 1MA $\rightarrow 0.8 \mathrm{MA}$
$\lambda_{\text {Te }}$ increases by a factor of ~ 2

- $\lambda_{\text {ne }}$ remains unchanged

$\lambda_{\text {jsat }}$ and λ_{q} decrease with increasing Ip in Type-V ELMy H-mode

R-Rsep for fast probe $J_{\text {sat }}$ data is from equilibrium reconstruction

Ip: 1MA $\rightarrow 700 \mathrm{kA}$

- $\lambda_{\text {jsat }}: 0.4 \mathrm{~cm} \rightarrow 0.9 \mathrm{~cm}$
- $\lambda_{\mathrm{q}}: 0.5 \mathrm{~cm} \rightarrow 1.1 \mathrm{~cm}$

Power scan result: λ_{Te} and λ_{q} decrease with increasing power while λ ne stays constant, in Type-V ELMy H-mode

$\mathrm{P}_{\mathrm{NBI}}: 1 \mathrm{MW} \rightarrow 2 \mathrm{MW}$

- $\lambda_{\mathrm{Te}}: 0.6 \mathrm{~cm} \rightarrow 0.44 \mathrm{~cm}$
- $\lambda_{\text {ne }}$: staying at $\sim 0.65 \mathrm{~cm}$
- $\lambda_{\mathrm{q}}: 0.69 \mathrm{~cm} \rightarrow 0.54 \mathrm{~cm}$

Comparison of observed dependences with H-mode SOL width scaling laws from conventional tokamaks

$$
\begin{array}{ll}
\lambda_{T e} \propto n_{e}^{0.92 \pm 0.18} I_{p}^{-1.79 \pm 0.27}\left(P_{t o t}-P_{r a d}\right)^{-0.63 \pm 0.09} & \text { from ASDEX-U1 } \\
\lambda_{n e} \propto n_{e}^{1.11 \pm 0.13} I_{p}^{-2.25 \pm 0.16} & \text { from ASDEX-U1 } \\
\lambda_{q} \propto B_{t}^{-0.93} q_{95}^{0.41} P_{S O L}^{-0.48} n_{e, u}^{0.15} & \text { from JET }{ }^{2}
\end{array}
$$

- $\lambda_{T e}, \lambda_{\text {ne }}$, and λ_{q} dependence on I_{p} and power: consistent with scaling laws
- λ_{q} dependence on density: consistent with scaling law
- λ_{Te} and λ_{ne} dependence on density: different trend from scaling laws
${ }^{1}$ K. McCormick, J. Nuclear Material 266-269 (1999) 99
${ }^{2}$ W.Fundamenski, Nucl. Fusion 44 (2004) 20

Role of ELMs in determining SOL widths

λ_{Te} is strongly affected by ELMs and turbulent blobs

- Probe measurement is continuously affected by ELMs and blobs
\rightarrow measured Te shows high scatter
\rightarrow Te SOL width broadens
- Probe I-V data with ELM affected portions removed
\rightarrow re-process probe data
\rightarrow Te SOL width becomes narrower
- TS measurement is instantaneous
\rightarrow misses many ELM filaments in the near SOL
\rightarrow effectively represents inter-ELM profile with narrower $\lambda_{\text {Te }}$
\rightarrow Probe $\lambda_{\text {Te }}$ (with ELMs and blobs removed) similar to TS $\lambda_{\text {Te }}$
T_{e} profile is highly affected by ELMs and turbulent blobs

λ_{ne} is little affected by ELMs and turbulent blobs

- $\lambda_{\text {ne }}$ from probe is only a little broader than $\lambda_{\text {ne }}$ from TS
- Probe data 'without ELMs and bobs' produces only a little narrower $\lambda_{\text {ne }}$, compared with λ_{ne} 'with ELMs and blobs'
- Change in Te affects density only to a limited extent because of stronger contribution of jsat (i.e., $n_{e} \propto I_{\text {sat }}^{+} / \sqrt{T_{e}}$)
'Time-average' density profile is not sensitive to ELMs and turbulent blobs

ELMs may be responsible for broad Te and heat flux profiles

$$
\left.\begin{array}{l}
\text { 1. Characteristics of Type-V ELMs }{ }^{1}: \\
\mathrm{n}=3-4, \mathrm{~L}_{\Phi} \sim 0.15 \mathrm{~m}, \mathrm{~L}_{\mathrm{r}} \sim 0.1 \mathrm{~m}, \mathrm{~L}_{\mathrm{z}} \sim 0.1 \mathrm{~m}, \\
\mathrm{v}_{\Phi} \sim 8.6 \mathrm{~km} / \mathrm{s}, \mathrm{v}_{\mathrm{r}} \sim 0.2 \mathrm{~km} / \mathrm{s} \\
\text { 2. Outer circumference of plasma } \\
\text { surface at midplane }=9 \mathrm{~m}
\end{array}\right\}
$$

ELM toroidal coverage at outer midplane $=(0.45-0.6) / 9=5-7 \%$

- TS measurement is made at a specific toroidal location instantaneously \rightarrow Probability of a specific TS measurement to detect ELM is $5-7 \%$
\rightarrow Ensemble averaged TS Te profile effectively represents inter-ELM profile
- Probe continuously measures IV curves with $\mathrm{t}_{\text {sweep }}=0.25 \mathrm{~ms}$ and is hit by toroidally rotating ELM filaments, while moving across SOL
\rightarrow Probe Te profile represents an ELM-averaged one (broad profile)
- IR camera measures heat flux profile for $33 \mathrm{~ms} \rightarrow$ reflects multiple ELM stripes at the divertor target (broader profile than without ELMs)

[^0]
TS measurement for ELM-free H -mode provides evidence of the role of ELM filaments in determining $\lambda_{T \mathrm{e}} / \lambda_{\mathrm{q}}$ ratio

1. $\lambda_{\mathrm{Te}} / \lambda_{\mathrm{q}}=\frac{7}{2}\left(\frac{T_{e}-T_{e 1}}{T_{e}-C q_{1} T_{e}^{-5 / 2}}\right)^{1}$ is expected if e-conduction is dominant, in light of flat T_{e} and heat flux profiles in the far SOL (i.e., $\lambda_{T \mathrm{e}} / \lambda_{\mathrm{a}} \sim 2$)
2. Experimental results:

- Type-V ELM H-mode: $\lambda_{\mathrm{Te}} / \lambda_{\mathrm{q}} \sim 2$ (Probe vs IR)
- Type-V ELM H-mode: $\lambda_{\mathrm{Te}} / \lambda_{\mathrm{a}} \sim 1$ (TS vs IR)
- ELM-free H-mode: $\lambda_{\mathrm{Te}} / \lambda_{\mathrm{q}} \sim 2(\mathrm{TS}$ vs IR)

More evidence is to be investigated in the next campaign:

- Take probe measurement for ELM-free H-mode and compare with IR
- Take fast ($\sim 20 \mathrm{kHz}$) IR camera measurement to avoid effect of ELM stripes
${ }^{1}$ J-W. Ahn, submitted to Phys. Plasmas (2008)

Summary and conclusions

1. Dependences of $\lambda_{\mathrm{T}}, \lambda_{\mathrm{ne}}, \lambda_{\mathrm{q}}$, and $\lambda_{\text {jsat }}$ on I_{p}, nebar, and input power in H -mode plasmas were identified negative dependence on I_{p} and power

no dependence on nebar

λ_{q} change appears to be driven primarily by λ_{Te} change
2. $\lambda_{\text {ne }}$ remains largely unchanged by any parameter scan, due to the stiff edge density gradient in H -mode
3. Comparison with H -mode scaling laws from conventional tokamaks
$\lambda_{\mathrm{Te}}, \lambda_{\mathrm{ne}}$, and λ_{q} dependence on I_{p} and power is consistent with scaling laws
λ_{q} dependence on density also consistent with the scaling law $\lambda_{\text {Te }}$ and $\lambda_{\text {ne }}$ dependence on density shows different trend
4. ELM filaments appear to broaden Te and heat flux SOL widths Probe and ensembled TS measurements represent different aspect of type-V ELMy H-mode profiles, i.e. ELM-averaged and inter-ELM profiles, respectively

Future Work

1. More data points and confidence

SOL width scaling laws for $\lambda_{\mathrm{q}}, \lambda_{\mathrm{Te}}$ and λ_{ne}
Comparison with theoretical models eg, SOLPS results and analytic λ_{q} models
Extrapolation to future machines
2. More detailed investigation of parallel SOL transport

Roles of parallel convection to account for remaining discrepancy in Near SOL, using the Mach probe in 2009
Probe measurement in ELM-free H-mode to double-check the role of e-conduction in parallel transport
3. Fast IR camera measurement to separate ELM effects
4. Investigate relation of SOL widths with edge turbulence characteristics, eg, Probe $\mathrm{I}_{\text {sat }}$ data, GPI data, Edge reflectometry data Investigation of perpendicular SOL transport

Sign up for pre-print!

[^0]: ${ }^{1}$ R. Maingi, et al., Phys. Plasmas 13, 092510 (2006)

