

Supported by

Investigation of microtearing instability in NSTX with X-ray diagnostics

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL **PPPL** PSI **Princeton U SNL** Think Tank. Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

K.L. Wong, K. Tritz*, D.R. Smith,
K. Hill, S. Kaye, A.L. Roquemore PPPL, Princeton University
*Johns Hopkins University
and the NSTX Research Team

50th Annual Meeting of the APS-DPP November 17 - 21, 2008 Dallas, Texas

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache IPP, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

Office of

Science

Outline

- Introduction
- Soft X-ray camera
- SVD(singular-value-decomposition) analysis of X-ray data
- X-ray spectrometer
- Summary

Introduction

• In some beam-heated H-mode NSTX plasmas, microtearing instabilities can produce overlapping islands and the resulting stochastic magnetic field can explain χ_e obtained from TRANSP analysis

Ref: Wong et al., PRL (2007), Phys. Plasma (2008)

 It becomes desirable to search for direct and indirect experimental evidence of microtearing modes in these plasmas

X-ray emissivity

- For Maxwellian electrons in NSTX plasmas, X-ray emission is dominated by collisional excitation of impurity ions¹; dielectronic recombination² is small; bremsstrahlung³(f→f) and radiative recombination⁴ (f→b) are very small
- Emissivity for both (1), (2) & (3) scale like $\varepsilon \sim n_e n_z (Z e)^2 \sqrt{T_e}$
- ϵ is approximately constant on a flux surface for NSTX plasmas
 - See Stutman et al., RSI <u>74</u>,1982 (2003)
- T_e fluctuations δT_e give rise to $\delta \epsilon$ which may be measurable in NSTX

Crude estimates

- Take parameters from #116313, r/a=0.5, t=0.9s
- Island full width: $\Delta r = 4$ ($b_{mn} R r q / m s$)1/2 ~ 0.85 cm
- Put $\xi_r \le \Delta r / 2 \sim 0.4 \text{ cm}$, $L_n \sim 50 \text{ cm}$, $L_T \sim 35 \text{ cm}$,
- get $\delta \epsilon / \epsilon \sim \xi_r / L_n + 0.5 \xi_r / L_T \sim 1.4\%$
- δε/ε ~ 1% is not too difficult to detect if we have a diagnostic that can do local measurements
- However, all we have is an X-ray camera for line-of-sight measurements - difficult !

X-ray camera

Ref: Stutman et al., RSI <u>74</u>,1982 (2003)

SVD analysis

- Ref: T. Dudok de Wit et al., PoP <u>1</u>, 3228(1994)
- Expand the discrete signal (n x m matrix) y(x_j, t_i) into a set of modes that are orthogonal in time and space

 $y(x_j, t_i) = \sum_{k=1 \rightarrow K} A_k \phi_k(x_j) \psi_k(t_i), K = min(n,m)$

- Chrono = temporal eigenfunction = $\psi_k(t_i)$
- Topo = spatial eigenfunction = $\phi_k(x_j)$
- Weight distribution: A_k (≥0), k =1, 2, K
- Construct the matrix Y_{ij} = y(x_j, t_i) and use IDL subroutine to do SVD analysis

Test program on known MHD activities

Edge oscillation - raw NSTX data

Meeting name - abbreviated presentation title (last name)

SVD result for a single mode (NSTX)

Growth of a single MHD mode (DIII-D data)

Changing frequency - determination of m/n difficult from Mirnov data

10

SVD result of ECE data in DIII-D

m=1 mode from topo - Wong et al.,PRL (2000)

11

Growth rate of microtearing modes (NSTX#116313, 0.9s)

Broadband expected - many unstable modes

SVD result (#116313,1.002-1.003s)

SVD result - continue

Meeting name - abbreviated presentation title (last name)

Summary of NSTX SVD results

- Topo frequently exhibits wave-packet structure although the camera spatial resolution is marginal
- Chrono usually consists of irregular / intermittent bursts
- No sign of single mode growth has temporal resolution
 - f_{Nyquist}= 300kHz , i.e., Landau's Scenario NOT observed
- No single frequency signal observed usually see broadband fully developed turbulence (Ruelle-Takens scenario ?)
- More work is needed for data interpretation

More data needed

- All the useful data we have now are from one horizontal array (15 channels: #16 - #30)
- The other two arrays have thick filters
- Need more data with all 46 channels using the same thin filter (10 μm Be)

D_e and the X-ray energy spectrum

• Kinetic eq: $\partial f/\partial t = e/m E \partial f/\partial v + C(f) + LD_eLf$

 $L = \partial / \partial x - (eE^{A}/m)/v^{2}$

E - applied electric field, E^A - ambipolar electric field

- Perturbative solution: $f = f^{(0)} + f^{(1)} + f^{(2)} + ...$
- 0-th order: $0 = C(f^{(0)}) \rightarrow$ local Maxwellian
- 1st order: $0 = C(f^{(1)}) e/m E \partial f^{(1)}/\partial v \rightarrow Spitzer resistivity$
- 2nd order: $0 = C(f^{(2)}) + LD_e Lf^{(0)} e/m E \partial f^{(1)} / \partial v$

and f⁽²⁾ gives information on D_e

• Ref: K. Molvig et al., PRL <u>41</u>, 1240 (1978)

X-ray spectrometer

- Energy range: 5 25 keV (Amptek-X123)
- Energy resolution: 260 eV
- Temporal resolution: 3 10 ms @ 200,000 counts/s

18

Summary

- It may be possible to obtain some direct and indirect experimental evidence of microtearing modes from the X-ray emission from NSTX plasmas
- Preliminary SVD analysis shows wave-packet structures in data from X-ray camera - more data from all 46 channels are needed
- X-ray spectrometer is being installed will get some data in 2009

