

Supported by



### **Plasma performance improvements from** optimized error field correction in NSTX

College W&M Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL **PPPL** PSI Princeton U Purdue U SNL Think Tank. Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U** Wisconsin

#### Jonathan Menard \_\_\_\_\_

S.P. Gerhardt, D.A. Gates

S.A. Sabbagh 🖾 Columbia University

and the NSTX Research Team

#### 50<sup>th</sup> Annual Meeting of the Division of Plasma Physics Hyatt Regency Hotel - Dallas, Texas November 17-21, 2008





Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U **loffe Inst RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP.** Garching ASCR, Czech Rep **U** Quebec

Office of

### Abstract

The active suppression of n=1 resonant field amplification (RFA) of intrinsic error fields was previously shown to lead to pulse length extension at high beta in NSTX. The correction of intrinsic n=3 error fields was also found to maintain/increase plasma rotation near the plasma boundary resulting in further pulse length extension for operation above the no-wall limit. More recently, the optimal n=3 error field correction (EFC) was determined as a function of plasma current indicating that n=3 intrinsic EF is most likely related to the PF or TF coil system rather than the OH coil as is the case for the n=1 intrinsic EF. Importantly, n=2 error fields were also investigated and measured to be small, indicating odd-n (n=1 and 3) EFs are most prominent in NSTX. Finally, the time response of the n=1 RFA suppression has been optimized by optimizing the low-pass filtering and proportional gain to more robustly control n=1 RFA and unstable n=1 RWMs. Overall, the combined n=3 EFC and n=1 RFA and RWM control has been instrumental in reliably increasing the duration of operation above the no-wall limit. This improved control was used in achieving record pulse-lengths on NSTX and is being applied to a wide range of operating scenarios in NSTX.

This work was supported by DoE contract No. DE-AC02-76CH03073.

## Effective EF and RWM control relies heavily on robust detection of small (~1G) non-axisymmetric magnetic fields

- NSTX has powerful low-f mode detection capabilities:
  - -54 sensors, 2 components of B:
    - 30 radial ( $B_R$ ) and 24 poloidal ( $B_P$ )
    - 6 B<sub>R</sub>'s are ex-vessel saddle coils
  - Toroidal mode-numbers n=1, 2, 3
    - Only n=1 used in real-time thus far
- Several RWM/EF sensor combinations used:
  - $-B_{P-U} + B_{P-L}$
  - $-B_{R-U} + B_{R-L}$
  - $-B_{P-U} + B_{P-L}$  with spatial offset
  - All sensors in combination
- $B_{P-U} + B_{P-L}$  described here



VALEN Model of NSTX (Columbia Univ.)

## The NSTX low-frequency mode detection system has been instrumental in identifying vacuum error fields

#### Error field detection & correction timeline:

- 2001 Primary vertical field coil (PF5) identified as n=1 EF source, and was corrected in 2002 → sustained high β
- 2006 Determined force (from OH leads) at top of machine induces TF coil motion 1-2 mm at midplane relative to PF coils
   → n=1 B<sub>R</sub> EF at outboard midplane
- 2007 shimmed TF w.r.t. OH to minimize relative motion of OH and TF
  - <u>n=1 EF reduced, but not eliminated</u>
- 2007-2008 identified n=3 intrinsic EF, find no evidence of significant n=2 EF





## n=1 EF from TF coil motion is $\propto I_{OH} \times I_{TF}$ , but has additional time lags and non-linearities which complicate correction





#### At high $\beta$ , EF correction can aid sustainment of high toroidal rotation needed for passive (rotational) stabilization of the RWM



- Use real-time  $I_{OH} \times I_{TF},$  incorporate observed time-lag and non-linearity of EF
- Empirically minimize rotation damping near q=2-3 for 100-200ms of reference shot
  - Extrapolate in time, balance m=2 against m=0 (*non-resonant!*) of EF from moving TF
  - Correction coefficients must be altered for different q(ρ,t), startup, shape, etc.



#### Optimized B<sub>P</sub> sensor usage improves detection of low-f n=1 mode, enabling improved feedback suppression of RFA and RWMs



Optimal shift increases n=1 signal / baseline by 2-3  $\times$   $\rightarrow$  higher stable feedback gain

## Using optimized $B_P$ sensors in control system allows feedback to provide most/all n=1 error field correction at high $\beta$

- Previous n=1 EF correction required a priori estimate of intrinsic EF
- Additional sensors  $\rightarrow$  detect modes with RWM helicity  $\rightarrow$  increased signal to noise
- Improved detection → higher gain → EF correction using <u>only feedback on RFA</u>

#### EFC algorithm developed in FY07:

- Use time <u>with minimal intrinsic EF</u> and RWM stabilized by rotation
- Intrinsic Ω<sub>φ</sub> collapse absent in 2007
  → purposely apply n=1 EF to reduce rotation, destabilize RWM
- Find corrective feedback phase that reduces applied EF currents
- Increase gain until applied EF currents are nearly completely nulled and plasma stability restored
- Then turn off applied error field (!)



→ Use same gain/phase settings to suppress RFA from intrinsic EF **and** any unstable RWMs

# 2008: n=1 feedback gain and low-pass filter time-constant optimized at high current I<sub>P</sub>= 1.1MA

- Instead of applying known n=1 EF, used OHxTF EF
  - 1.1MA uses full OH swing
- Use B<sub>P</sub> U/L averaging and include n=3 EFC
- Increased gain scan by factor of 3: from 0.7 → 2
  - Response to n=1 RFA from OH×TF error field changes very little for  $G_P > 1$
  - System marginally stable at  $G_P$ = 2 for  $\tau_{LPF}$  as low as 1-2ms
- Optimal control parameters:
- $G_P = 1-1.5, \tau_{LPF} = 2-5ms$

| $G_{P} = 1.5, \tau_{LPF} = 50ms$<br>$G_{P} = 2.0, \tau_{LPF} = 5ms$ |
|---------------------------------------------------------------------|
|---------------------------------------------------------------------|



### Correction of intrinsic n=3 error fields important at high $\beta_N$



- Pulse-length depends on polarity of applied n=3
  - Anti-corrective polarity disrupts  $I_P$  and  $\beta$
- Plasmas operate above n=1
  no-wall limit → RFA

– slows rotation  $\rightarrow$ 

- destabilizes n=1 RWM
- Correction current magnitude for n=3 similar to that for n=1 correction
  - Applied n=3  $|B_R|$  is  $\approx$  6G at outboard midplane
  - Fortuitous phase match between intrinsic n=3 EF and field coils can apply
- Assessing n=3 EF sources...

#### • n > 1 error fields not commonly addressed in present devices, or in ITER

#### **2008: Attempt to determine source of n=3 error field**

Method: Assess n=3 error field vs. vertical field (PF5 coil), toroidal field



#### Pulse length is unreliable guide for optimal EF correction





#### Method utilized to determine optimal n=3 correction

- Compute total plasma angular momentum
  Use up to 5 kinetic profile time-slices before collapse
- Fit angular momentum data vs. correction coil current – Fit to quadratic and cubic function of correction coil current

Total plasma angular momentum:

 $\mathcal{L}_{plasma} \equiv \int \rho_{mass}(\psi) \,\Omega_{\phi}(\psi) \,R^2 \,dV$ 



### **Optimal n=3 error field correction fit for lower I<sub>P</sub>, lower B<sub>T</sub>**



**())** NSTX

### **Optimal n=3 error field correction fit for lower I<sub>P</sub>, higher B<sub>T</sub>**



### **Optimal n=3 error field correction fit for higher I<sub>P</sub>, higher B<sub>T</sub>**



#### Assessment of most probable n=3 error field source



- Conclusions:
  - Most probable source of n=3 EF is vertical field (PF5), but TF is also possible source
  - Phase of intrinsic n=3 EF cannot be determined further EFC optimization possible
  - Torque variation with  $I_{RWM}$  consistent with  $\delta B^2$  dependence  $\rightarrow$  consistent with NTV

### No significant n=2 intrinsic error field identified

- Shot duration and duration of high  $\beta_N$  and rotation reduced with applied n=2
- Results independent of phase & amplitude for 0.5kA, 1kA  $\rightarrow$  n=2 intrinsic EF < 500A



**()** NSTX

APS-DPP 2008 - Optimized EFC in NSTX (J. Menard)



#### n=3 EFC + n=1 feedback was successfully applied to wide range of plasma current = 0.75-1.1MA

• Pulses run reliably until nearly all OH flux is consumed



### Optimized n=3 EFC + n=1 feedback + Lithium → record NSTX pulse-lengths

- Flux consumption reduced following LITER experiments
  - Lower  $V_{LOOP}$  at lower  $P_{NBI}$

- Li + optimized EFC  $\rightarrow$ 
  - Avoid late n=1 rotating mode
  - Rotation sustained
  - $\beta_{\text{N}} \geq$  5 sustained 3-4  $\tau_{\text{CR}}$
  - record pulse-length = 1.8s





# n=3 error correction combined with n=1 RFA/RWM feedback control increases $\beta$ and rotation, and extends pulse



- Non-axisymmetric feedback algorithm has been developed using unique feedback training scheme
  - Prevents onset of MHD modes
  - Plasma rotation is maintained throughout discharge
  - Control statistically raises  $\beta$  and increase pulse length

Pulse averaged  $\beta_N$  vs. current flat-top





### Probability of long pulse and <β<sub>N</sub>><sub>pulse</sub> increases significantly with active RWM control and error field correction



- Standard H-mode operation shown
  - I<sub>p</sub> flat-top duration > 0.2s (> 60 RWM growth times)
- Control allows  $<\beta_N >_{pulse} > 4$ -  $\beta_N$  averaged over  $I_p$  flat-top

## **Conclusions**

- Extensive non-axisymmetric magnetic sensor array useful for detecting and correcting intrinsic n=1 error fields
- Dominant n=1 error field results from TF bundle motion from electromagnetic interaction between OH and TF coils
- Gain and low-pass filter optimization of n=1 active feedback control successfully suppresses resonant field amplification (RFA) of n=1 EF and unstable RWMs
- n=3 intrinsic error field adversely impacts high-beta operation, and is most likely associated with vertical field coil
- No evidence (yet) of significant n=2 intrinsic error field
- Combination of n=3 EF correction + n=1 active feedback control improves plasma performance for a wide range of conditions: sustained high rotation,  $\beta \rightarrow$  record pulse duration



#### Provide your e-mail address for a copy of this presentation

