

Supported

Recent Results from High Harmonic Fast Wave Experiments on NSTX

College W&M **Colorado Sch** Mines Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U Old Dominion U ORNL PPPL PSI **Princeton U** Purdue U **SNL** Think Tank, Inc. **UC Davis UC** Irvine **UCLA** UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

G. Taylor¹

In collaboration with

R. E. Bell¹, L. A. Berry², P. T. Bonoli³,
R. W. Harvey⁴, J. C. Hosea¹,
E. F. Jaeger², B. P. LeBlanc¹, C. K. Phillips¹,
P. M. Ryan², E. J. Valeo¹, J. Wilgen²,
J. R. Wilson¹, J. C. Wright³, H. Yuh⁵ and the NSTX Team

¹Princeton Plasma Physics Laboratory
 ²Oak Ridge National Laboratory
 ³MIT Plasma Science and Fusion Center
 ⁴CompX
 ⁵Nova Photonics

50th Annual Meeting of the Division of Plasma Physics Dallas, Texas, November 17-21, 2008

Culham Sci Ctr **U St. Andrews** York U Chubu U Fukui U Hiroshima U Hvogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo **JAEA** Hebrew U loffe Inst **RRC Kurchatov** Inst TRINITI **KBSI KAIST** POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

NSTX HHFW Antenna Has Well Defined Spectrum, Ideal for Studying Phase Dependence of Heating

HHFW antenna extends toroidally 90°

 Phase between adjacent straps easily adjusted between Δφ = 0° to Δφ = 180°

Dramatic Improvement in HHFW Heating & CD Through Increased B_t(0) & Edge Density Control

- Improved HHFW heating at higher B_t(0) results from discovery of important role of surface waves in limiting coupling
 - Edge power loss increases when perpendicular propagation onset density is near antenna
- Strong first pass absorption in NSTX ideal for studying competition between core & edge power loss
- NSTX results indicate surface wave damping could be important for ITER ICRF heating

J.C. Hosea, et al. 2007 APS-DPP Meeting

RF-Induced Increase in Electron Stored Energy Comparable in He & D₂ Plasmas

• Noticeable increase in ΔW_{EF} with $\Delta \phi = -30^{\circ}$ phasing in D₂ plasmas with lithium edge conditioning duration

P.M. Ryan et al., Poster NP6.00104, Wed AM

Improved HHFW Heating in NSTX Providing Important Tool for Transport Studies

- NSTX record $T_e(0) \sim 5 \text{ keV} \& \text{ strong } T_e \text{ gradient}$
 - Supports high-k scattering study of small scale turbulence in He and D₂
- First HHFW core electron heating in deuterium NBI H-mode
 - Required Li conditioning for edge density control
 - Supports core electron transport study in NBI H-mode

E. Mazzucato, et al. PRL 101, 075001 (2008); H. Yuh, et al., Invited talk T12.00005 Thurs 11:30 AM

Initial HHFW Heating Experiments During Startup & Early I_p Ramp-up Show Good Electron Heating

- Coupled $P_{rf} \sim 1.1$ MW during early I_p ramp-up (t ~ 120 ms), increasing $T_e(0)$ from 140 eV to 700 eV when $n_e(0) < 1 \times 10^{19}$ m⁻³
 - Supports proposed NSTX EC/HHFW assisted non-inductive startup & $\rm I_p$ ramp-up scenario

P.M. Ryan et al., Poster NP6.00104, Wed AM

Stronger Interaction Between Antenna & Divertor Along Field Line at Lower Phase/Longer Wavelength

- "Hot" region in outboard divertor much more pronounced at Δφ = -90° than Δφ = -150°
 - Dies away after RF turn off in ~ 20 ms for $\Delta \phi$ = -90° & in ~ 8 ms for $\Delta \phi$ = -150°

J.C. Hosea et al., Poster NP6.00105, Wed AM

Motional Stark Effect (MSE) Measurement of Core HHFW CD Profile Consistent with Modeling

LRDFIT: Uses MSE data, magnetics & kinetic profiles

- Measured CD profile consistent with AORSA prediction using LRDFIT equilibrium, full toroidal spectrum, Ehst-Karney approximation & trapping
- Measured q(0) decreases from
 1.0 to 0.6 with HHFW CD at
 P_{rf} ~ 1.2 MW
 - Offers prospect of controlling q(0) in integrated scenarios
- Electron trapping significantly reduces CD efficiency

C.K. Phillips, et al., Poster NP6.00106, Wed AM

3D Codes Using Full Toroidal Spectrum to Include Surface Damping and CD Effects

AORSA $|E_{RF}|$ field amplitude with 101 n_{ϕ} modes

- Waves propagate around plasma axis in + B_b direction
- Wave fields very low near inner wall
- Edge loss mechanisms need to be identified experimentally and included by RF SciDAC in advanced codes

Antenna Upgrades in 2009 & 2010 Double Coupled Power & Increase Resilience to ELMs

- Double feed upgrade shifts ground from bottom to center of antenna straps for 2009 run campaign:
 - Doubles power per strap
 - Permits larger plasmaantenna gap, providing reduced fast ion interaction
- ELM dump will be added for 2010 run campaign:
 - more resilient coupling during large ELMs

Summary

• Surface waves can significantly limit HHFW coupling

⇒ Effect could be important for ITER since wave number will be relatively low for some heating/CD scenarios

- Dramatic improvement in HHFW heating & CD through increased B_t(0)
 & lithium edge density control
 - NSTX record $T_e(0) \sim 5 \text{keV}$ with HHFW heating
 - Good HHFW electron heating during early I_p ramp-up
 - First observation of HHFW core heating in NBI H-mode
- CD measurements consistent with simulations from AORSA & TORIC
 - RF SciDAC initiative will be important for studying edge loss & providing accurate CD estimates
- HHFW antenna upgrades in 2009-10 to provide higher power, reduced fast ion-antenna interaction & better resilience to ELMs

See More Details on NSTX HHFW Results at the Wednesday Morning Poster Session

<u>NP6.00104:</u>

Progress on HHFW Heating and Current Drive on NSTX *P.M. Ryan, et al.*

NP6.00105:

Edge Plasma Properties for HHFW Heating on NSTX J.C. Hosea, *et al.*

<u>NP6.00106:</u>

Numerical Modeling of HHFW Heating and Current Drive on NSTX C.K. Phillips, *et al*

Backup Slides

NSTX Results Indicate Surface Wave Damping Could be Important for ITER ICRF Heating

- k_φ ~ 4 m⁻¹ at 53 MHz for
 CD phasing in ITER
- Propagation onset
 density is relatively
 low: ~ 1.4 x 10¹⁸ m⁻³
- For scrape off density above onset density, surface wave damping should be significant

Strong "Single Pass" Absorption Ideal for Studying Competition Between Core & Edge Power Loss

Modeling Must Include Power Spectrum of Launched Waves for Quantitative Agreement with MSE

- Large edge field pitch affects wave spectrum in plasma core
- Current driven by the back propagating lobe is localized well off-axis and lost due to trapping effects